【題目】已知下列命題:

①在某項(xiàng)測(cè)量中,測(cè)量結(jié)果服從正態(tài)分布,若內(nèi)取值范圍概率為,則內(nèi)取值的概率為;

②若,為實(shí)數(shù),則“”是“”的充分而不必要條件;

③已知命題,則是:

,;

中,“角,成等差數(shù)列”是“”的充分不必要條件;其中,所有真命題的個(gè)數(shù)是( )

A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)

【答案】C

【解析】對(duì)于①,根據(jù)正態(tài)曲線的對(duì)稱性可得,故,即①正確.

對(duì)于②,,故“”是“”的既不充分也不必要條件.故②不正確.

對(duì)于③,由題意得是:,,故③不正確.

對(duì)于④,“角,,成等差數(shù)列”等價(jià)于;由,即,當(dāng),即時(shí)等式成立.當(dāng),可得.即“”等價(jià)于“”,所以“角,,成等差數(shù)列”是“”的充分不必要條件,故④正確.

綜上可得①④正確.選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們國(guó)家正處于老齡化社會(huì)中,老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數(shù)約有66萬,為了了解老人們的健康狀況,政府從老人中隨機(jī)抽取600人并委托醫(yī)療機(jī)構(gòu)免費(fèi)為他們進(jìn)行健康評(píng)估,健康狀況共分為不能自理、不健康尚能自理、基本健康、健康四個(gè)等級(jí),并以80歲為界限分成兩個(gè)群體進(jìn)行統(tǒng)計(jì),樣本分布被制作成如下圖表:

1)若采用分層抽樣的方法再?gòu)臉颖局械牟荒茏岳淼睦先酥谐槿?/span>8人進(jìn)一步了解他們的生活狀況,則兩個(gè)群體中各應(yīng)抽取多少人?

2)估算該市80歲及以上長(zhǎng)者占全市戶籍人口的百分比;

3)據(jù)統(tǒng)計(jì)該市大約有五分之一的戶籍老人無固定收入,政府計(jì)劃為這部分老人每月發(fā)放生活補(bǔ)貼,標(biāo)準(zhǔn)如下:

①80歲及以上長(zhǎng)者每人每月發(fā)放生活補(bǔ)貼200元;

②80歲以下老人每人每月發(fā)放生活補(bǔ)貼120元;

③不能自理的老人每人每月額外發(fā)放生活補(bǔ)貼100元.

利用樣本估計(jì)總體,試估計(jì)政府執(zhí)行此計(jì)劃的年度預(yù)算.(單位:億元,結(jié)果保留兩位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2010-2018年之間,受益于基礎(chǔ)設(shè)施建設(shè)對(duì)光纖產(chǎn)品的需求,以及個(gè)人計(jì)算機(jī)及智能手機(jī)的下一代規(guī)格升級(jí),電動(dòng)汽車及物聯(lián)網(wǎng)等新機(jī)遇,連接器行業(yè)增長(zhǎng)呈現(xiàn)加速狀態(tài).根據(jù)該折線圖,下列結(jié)論正確的個(gè)數(shù)為( )

①每年市場(chǎng)規(guī)模量逐年增加;

②增長(zhǎng)最快的一年為2013~2014;

③這8年的增長(zhǎng)率約為40%;

④2014年至2018年每年的市場(chǎng)規(guī)模相對(duì)于2010年至2014年每年的市場(chǎng)規(guī)模,數(shù)據(jù)方差更小,變化比較平穩(wěn)

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù)z,(m∈R,i是虛數(shù)單位).

(1)若z是純虛數(shù),求m的值;

(2)設(shè)z的共軛復(fù)數(shù),復(fù)數(shù)+2z在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第一象限,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】月份,某市街頭出現(xiàn)共享單車,到月份,根據(jù)統(tǒng)計(jì),市區(qū)所有人騎行過共享單車的人數(shù)已占,騎行過共享單車的人數(shù)中,有是大學(xué)生(含大中專及高職),該市區(qū)人口按萬計(jì)算,大學(xué)生人數(shù)約萬人.

1)任選出一名大學(xué)生,求他(她)騎行過共享單車的概率;

2)隨單車投放數(shù)量增加,亂停亂放成為城市管理的問題,以下是累計(jì)投放單車數(shù)量與亂停亂放單車數(shù)量之間的關(guān)系圖表:

累計(jì)投放單車數(shù)量

亂停亂放單車數(shù)量

①計(jì)算關(guān)于的線性回歸方程(其中精確到值保留三位有效數(shù)字),并預(yù)測(cè)當(dāng)時(shí),單車亂停亂放的數(shù)量;

②已知該市共有五個(gè)區(qū),其中有兩個(gè)區(qū)的單車亂停亂放數(shù)量超過標(biāo)準(zhǔn).在“雙創(chuàng)”活動(dòng)中,檢查組隨機(jī)抽取三個(gè)區(qū)調(diào)查單車亂停亂放數(shù)量, 表示“單車亂停亂放數(shù)量超過標(biāo)準(zhǔn)的區(qū)的個(gè)數(shù)”,求的分布列和數(shù)學(xué)期望.

參考公式和數(shù)據(jù):回歸直線方程中的斜率和截距的最小二乘法估計(jì)公式分別為 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓的方程為,點(diǎn)的坐標(biāo)為.

(1)求過點(diǎn)且與圓相切的直線方程;

(2)過點(diǎn)任作一條直線與圓交于不同兩點(diǎn),,且圓軸正半軸于點(diǎn),求證:直線的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知多面體中,為菱形,,平面,,.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

(1)若,求函數(shù)的單調(diào)區(qū)間;

(2)若,且方程內(nèi)有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】技術(shù)員小張對(duì)甲、乙兩項(xiàng)工作投入時(shí)間(小時(shí))與做這兩項(xiàng)工作所得報(bào)酬(百元)的關(guān)系式為:,若這兩項(xiàng)工作投入的總時(shí)間為120小時(shí),且每項(xiàng)工作至少投入20小時(shí).

1)試建立小張所得總報(bào)酬(單位:百元)與對(duì)乙項(xiàng)工作投入的時(shí)間(單位:小時(shí))的函數(shù)關(guān)系式,并指明函數(shù)定義域;

2)小張如何計(jì)劃使用時(shí)間,才能使所得報(bào)酬最高?

查看答案和解析>>

同步練習(xí)冊(cè)答案