過圓外一點(diǎn)作圓的兩條切線,切點(diǎn)分別為,則的外接圓方程是                   (   )
A.B.
C.D.
D

專題:計(jì)算題.
分析:根據(jù)已知圓的方程找出圓心坐標(biāo),發(fā)現(xiàn)圓心為坐標(biāo)原點(diǎn),根據(jù)題意可知,△ABP的外接圓即為四邊形OAPB的外接圓,從而得到線段OP為外接圓的直徑,其中點(diǎn)為外接圓的圓心,根據(jù)P和O兩點(diǎn)的坐標(biāo)利用兩點(diǎn)間的距離公式求出|OP|的長(zhǎng)即為外接圓的直徑,除以2求出半徑,利用中點(diǎn)坐標(biāo)公式求出線段OP的中點(diǎn)即為外接圓的圓心,根據(jù)求出的圓心坐標(biāo)和半徑寫出外接圓的方程即可.
解答:解:由圓x2+y2=4,得到圓心O坐標(biāo)為(0,0),
∴△ABP的外接圓為四邊形OAPB的外接圓,又P(4,2),
∴外接圓的直徑為|OP|==2,半徑為
外接圓的圓心為線段OP的中點(diǎn)是(,),即(2,1),
則△ABP的外接圓方程是(x-2)2+(y-1)2=5.
故選D
點(diǎn)評(píng):此題考查了直線與圓的位置關(guān)系,要求學(xué)生熟練運(yùn)用兩點(diǎn)間的距離公式及中點(diǎn)坐標(biāo)公式.根據(jù)題意得到△ABP的外接圓為四邊形OAPB的外接圓是本題的突破點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若方程表示圓,且過點(diǎn)可作該圓的兩條切線,則實(shí)數(shù)的取值范圍為              

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知圓軸交于點(diǎn),與軸交于點(diǎn),其中為原點(diǎn).
(1)求證:的面積為定值;
(2)設(shè)直線與圓交于點(diǎn)、,若,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線與直線有兩個(gè)交點(diǎn)時(shí),實(shí)數(shù)k的取值范圍是                            (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知圓的方程為.
(1)求過點(diǎn)的圓的切線方程;
(2)過點(diǎn)作直線與圓交于兩點(diǎn),求的最大面積以及此時(shí)直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)直線與圓交于兩點(diǎn),若圓的圓心在線段上,且圓與圓相切,切點(diǎn)在圓的劣弧上,則圓的半徑的最大值是       ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若直線ly+1=k(x-2)被圓Cx2y2-2x-24=0截得的弦AB最短,則直線AB的方程是       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點(diǎn)P的直線l將圓C:(x-2)2+y2=4分成兩段弧,當(dāng)劣弧所對(duì)的圓心角最小時(shí),直線l的斜率k= ▲    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)M是圓上的點(diǎn),則M到直線的最長(zhǎng)距離是     

查看答案和解析>>

同步練習(xí)冊(cè)答案