【題目】設(shè)函數(shù)是定義在上的偶函數(shù),且,當時,,則在區(qū)間內(nèi)關(guān)于的方程解得個數(shù)為( )

A. B. C. D.

【答案】C

【解析】

由題意求得函數(shù)的周期,根據(jù)偶函數(shù)的性質(zhì),及當x[2,0]時,函數(shù)解析式,畫出函數(shù)fx)的圖象,根據(jù)圖象可得yfx)與ylog 8x+2)在區(qū)間(﹣26)上有3個不同的交點.

解:對于任意的xR,都有f2+x)=f2x),

fx+4)=f[2+x+2]f[x+2)﹣2]fx),

∴函數(shù)fx)是一個周期函數(shù),且T4

又∵當x[2,0]時,fx)=(x1,且函數(shù)fx)是定義在R上的偶函數(shù),

f6)=1,則函數(shù)yfx)與ylog 8x+2)在區(qū)間(﹣26)上的圖象如下圖所示:

根據(jù)圖象可得yfx)與ylog 8x+2)在區(qū)間(﹣2,6)上有3個不同的交點.

故選:C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)集合,選擇的兩個非空子集,要使中最小的數(shù)大于中最大的數(shù),則不同的選擇方法共有________種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一種大型商品,兩地都有出售,且價格相同,現(xiàn)地的居民從、兩地之一購得商品后回運的運費是:地每公里的運費是地運費的倍,已知兩地相距,居民選擇地購買這種商品的標準是:包括運費和價格的總費用較低.

1)求地的居民選擇地或地購物總費用相等時,點所在曲線的形狀;

2)指出上述曲線內(nèi)、曲線外的居民應(yīng)如何選擇購貨地點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若圓經(jīng)過坐標原點和點,且與直線相切, 從圓外一點向該圓引切線為切點,

)求圓的方程;

)已知點,且, 試判斷點是否總在某一定直線上,若是,求出的方程;若不是,請說明理由;

)若()中直線軸的交點為,點是直線上兩動點,且以為直徑的圓過點,圓是否過定點?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列有關(guān)平面向量分解定理的四個命題:

1)一個平面內(nèi)有且只有一對不平行的向量可作為表示該平面所有向量的基;

2)一個平面內(nèi)有無數(shù)多對不平行向量可作為表示該平面內(nèi)所有向量的基;

3)平面向量的基向量可能互相垂直;

4)一個平面內(nèi)任一非零向量都可唯一地表示成該平面內(nèi)三個互不平行向量的線性組合.

其中正確命題的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公園內(nèi)有一塊以為圓心半徑為米的圓形區(qū)域.為豐富市民的業(yè)余文化生活,現(xiàn)提出如下設(shè)計方案:如圖,在圓形區(qū)域內(nèi)搭建露天舞臺,舞臺為扇形區(qū)域,其中兩個端點,分別在圓周上;觀眾席為梯形內(nèi)切在圓外的區(qū)域,其中,,且,在點的同側(cè).為保證視聽效果,要求觀眾席內(nèi)每一個觀眾到舞臺處的距離都不超過米.設(shè),.問:對于任意,上述設(shè)計方案是否均能符合要求?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中裝有除顏色外形狀大小完全相同的6個小球,其中有4個編號為1,2, 3, 4的紅球,2個編號為A、B的黑球,現(xiàn)從中任取2個小球.;

(1)求所取2個小球都是紅球的概率;

(2)求所取的2個小球顏色不相同的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關(guān)于曲線的下列說法:(1)關(guān)于點對稱;(2)關(guān)于直線軸對稱;(3)關(guān)于直線對稱;(4)是封閉圖形,面積小于;(5)是封閉圖形,面積大于;(6)不是封閉圖形,無面積可言.其中正確的序號是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,底面是邊長為的正方形,底面,四棱錐的體積,的中點.

1)求異面直線所成角的大;

2)求點到平面的距離.

查看答案和解析>>

同步練習冊答案