某校課外興趣小組的學生為了給學校邊的一口被污染的池塘治污,他們通過實驗后決定在池塘中投放一種能與水中的污染物質(zhì)發(fā)生化學反應的藥劑.已知每投放個單位的藥劑,它在水中釋放的濃度(克/升)隨著時間(天)變化的函數(shù)關(guān)系式近似為,其中若多次投放,則某一時刻水中的藥劑濃度為各次投放的藥劑在相應時刻所釋放的濃度之和.根據(jù)經(jīng)驗,當水中藥劑的濃度不低于4(克/升)時,它才能起到有效治污的作用.
(Ⅰ)若一次投放4個單位的藥劑,則有效治污時間可達幾天?
(Ⅱ)若第一次投放2個單位的藥劑,6天后再投放個單位的藥劑,要使接下來的4天中能夠持續(xù)有效治污,試求的最小值.

(Ⅰ)有效治污的時間可達8天; (Ⅱ)的最小值為1

解析試題分析:(Ⅰ)先由可得在水中釋放的濃度再分別分段求出水中藥劑的濃度不低于4(克/升)時的天數(shù),從而得出有效治污的時間可達8天;  
(Ⅱ)先得出模型當時,,然后由基本不等式知,再由,解得,即的最小值為1 .
試題解析:(I)∵  ∴.                  2分
時,由,解得,此時;
時,由,解得,此時.        4分
綜上,得.故若一次投放4個單位的藥劑,則有效治污的時間可達8天.6分
(II)當時,,9分
 ,  ,則
當且僅當,即時取等號.
,解得 ,故所求的最小值為1 .             14分
考點:1.函數(shù)模型的應用;2.基本不等式的應用

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

設(shè),兩個函數(shù)的圖像關(guān)于直線對稱.
(1)求實數(shù)滿足的關(guān)系式;
(2)當取何值時,函數(shù)有且只有一個零點;
(3)當時,在上解不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在不考慮空氣阻力的情況下,火箭的最大速度(單位:)和燃料的質(zhì)量(單位:),火箭(除燃料外)的質(zhì)量(單位:)滿足.(為自然對數(shù)的底)
(Ⅰ)當燃料質(zhì)量為火箭(除燃料外)質(zhì)量兩倍時,求火箭的最大速度(單位:);
(Ⅱ)當燃料質(zhì)量為火箭(除燃料外)質(zhì)量多少倍時,火箭的最大速度可以達到8.(結(jié)果精確到個位,數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)
(I)解不等式
(II)求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)計算:
(2)已知,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖是某重點中學學校運動場平面圖,運動場總面積15000平方米,運動場是由一個矩形和分別以、為直徑的兩個半圓組成,塑膠跑道寬8米,已知塑膠跑道每平方米造價為150元,其它部分造價每平方米80元,

(Ⅰ)設(shè)半圓的半徑(米),寫出塑膠跑道面積的函數(shù)關(guān)系式;
(Ⅱ)由于受運動場兩側(cè)看臺限制,的范圍為,問當為何值時,運動場造價最低(第2問取3近似計算).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

命題p:關(guān)于x的不等式,對一切恒成立;命題q:函是增函數(shù).若p或q為真,p且q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)不等式的解集為M,求當x∈M時函數(shù)的最大、最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù) 
(1)若的定義域是,求實數(shù)的取值范圍及的值域;
(2)若的值域是,求實數(shù)的取值范圍及的定義域

查看答案和解析>>

同步練習冊答案