【題目】已知橢圓的左焦點為,是橢圓上關(guān)于原點對稱的兩個動點,當(dāng)點的坐標(biāo)為時,的周長恰為.
(1)求橢圓的方程;
(2)過點作直線交橢圓于兩點,且 ,求面積的取值范圍.
【答案】(1)(2)
【解析】
(1)求出AB,得到a,然后求解b,即可得到橢圓方程;(2)當(dāng)直線AB的斜率不存在時,求解三角形面積,設(shè)直線CD的方程為y=k(x+2)(k≠0).由消去y整理得:(1+2k2)x2+8k2x+8k2﹣8=0,△>0,設(shè)C(x1,y1),D(x2,y2),利用弦長公式求解CD,然后求解三角形面積,推出范圍即可.
(1)當(dāng)點的坐標(biāo)為時,,所以.
由對稱性,,
所以,得
將點代入橢圓方程 中,解得,
所以橢圓方程為.
(2)當(dāng)直線的斜率不存在時,,
此時.
當(dāng)直線的斜率存在時,設(shè)直線的方程為.
由消去整理得:. 顯然,
設(shè),則
故
.
因為 ,所以,
所以點到直線的距離即為點到直線的距離,
所以
,
因為,所以,
所以.綜上,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解高一學(xué)生的心理健康狀況,某校心理健康咨詢中心對該校高一學(xué)生的睡眠狀況進行了抽樣調(diào)查.該中心隨機抽取了60名高一男生和40名高一女生,統(tǒng)計了他們?nèi)雽W(xué)第一個月的平均每天睡眠時間,得到如下頻數(shù)分布表.規(guī)定:“平均每天睡眠時間大于等于8小時”為“睡眠充足”,“平均每天睡眠時間小于8小時”為“睡眠不足”.
高一男生平均每天睡眠時間頻數(shù)分布表
睡眠時間(小時) | |||||
頻數(shù) | 3 | 20 | 19 | 10 | 8 |
高一女生平均每天睡眠時間頻數(shù)分布表
睡眠時間(小時) | |||||
頻數(shù) | 20 | 11 | 5 | 2 |
(1)請將下面的列聯(lián)表補充完整,并根據(jù)已完成的列聯(lián)表,判斷是否有的把握認(rèn)為“睡眠是否充足與性別有關(guān)”?
睡眠充足 | 睡眠不足 | 合計 | |
男生 | 42 | ||
女生 | 7 | ||
合計 | 100 |
(2)由樣本估計總體的思想,根據(jù)這兩個頻數(shù)分布表估計該校全體高一學(xué)生入學(xué)第一個月的平均每天睡眠時間(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表);
(3)若再從這100人中平均每天睡眠時間不足6小時的同學(xué)里隨機抽取兩人進行心理健康干預(yù),則抽取的兩人中包含女生的概率是多少?
附:參考公式:.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù).
⑴若的定義域為,求實數(shù)的取值范圍;
⑵當(dāng),求函數(shù)的最小值;
⑶是否存在實數(shù),使得函數(shù)的定義域為,值域為?若存在,求出的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作.其中的一道題“今有木,方三尺,高三尺,欲方五寸作枕一枚.問:得幾何?”意思是:“有一塊棱長為3尺的正方體方木,要把它作成邊長為5寸的正方體枕頭,可作多少個?”現(xiàn)有這樣的一個正方體木料,其外周已涂上油漆,則從切割后的正方體枕頭中任取一塊,恰有一面涂上油漆的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高二(1)班全體女生的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題:
(1)求高二(1)班全體女生的人數(shù);
(2)由頻率分布直方圖估計該班女生此次數(shù)學(xué)測試成績的眾數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個焦點與拋物線的焦點重合,且拋物線的準(zhǔn)線被橢圓截得的弦長為1,是直線上一點,過點且與垂直的直線交橢圓于兩點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線的斜率分別為,求證:成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓:的左焦點,O為坐標(biāo)原點,為橢圓上的點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點都在橢圓上,且中點在線段(不包括端點)上,求面積的最大值,及此時直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com