【題目】某校從參加高三化學(xué)得分訓(xùn)練的學(xué)生中隨機(jī)抽出60名學(xué)生,將其化學(xué)成績(均為整數(shù))分成六段、、…、后得到部分頻率分布直方圖(如圖).

觀察圖形中的信息,回答下列問題:

(1)求分?jǐn)?shù)在內(nèi)的頻率,并補(bǔ)全頻率分布直方圖;

(2)據(jù)此估計(jì)本次考試的平均分;

(3)若從60名學(xué)生中隨機(jī)抽取2人,抽到的學(xué)生成績在內(nèi)記0分,在內(nèi)記1分,在內(nèi)記2分,用表示抽取結(jié)束后的總記分,求的分布列.

【答案】(1)答案見解析;(2)71;(3)答案見解析.

【解析】試題分析:

(1)利用頻率分布直方圖小長方形面積和為1列方程可得分?jǐn)?shù)在內(nèi)的頻率是0.3,據(jù)此補(bǔ)全頻率分布直方圖即可;

(2)由頻率分布直方圖可估計(jì)平均分為71;

(3)由題意可得的可能取值是0,1,2,3,4,利用超幾何分布的概率公式求得相應(yīng)的概率值即可得到其分布列.

試題解析:

(1)設(shè)分?jǐn)?shù)在內(nèi)的頻率為,根據(jù)頻率分布直方圖,有,可得.

(2)平均分為.

(3)成績在內(nèi)的有人,在內(nèi)的有人,在內(nèi)的有人,易知的可能取值是0,1,2,3,4,

, , , ,

所以的分布列為

0

1

2

3

4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|a≤x≤a+4},B={x|x>1 或x<﹣6}.
(1)若A∩B=,求a的取值范圍;
(2)若A∪B=B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市理論預(yù)測2007年到2011年人口總數(shù)與年份的關(guān)系如表所示

年份2007+x(年)

0

1

2

3

4

人口數(shù)y(十萬)

5

7

8

11

19


(1)請(qǐng)根據(jù)表提供的數(shù)據(jù),求最小二乘法求出y關(guān)于x的線性回歸方程;
(2)據(jù)此估計(jì)2012年該城市人口總數(shù).
參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場在近30天內(nèi)每件的銷售價(jià)格P(元)與時(shí)間t(天)的函數(shù)關(guān)系是P= ,該商場的日銷售量Q=﹣t+40(0<t≤30,t∈N),求這種商品的日銷售金額的最大值,并指出日銷售金額最大的一天是30天中的第幾天.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是橢圓的右焦點(diǎn), 是坐標(biāo)原點(diǎn), ,過的垂線交橢圓于, 兩點(diǎn), 的面積為.

(1)求該橢圓的標(biāo)準(zhǔn)方程;

(2)若直線與上下半橢圓分別交于點(diǎn)、,與軸交于點(diǎn),且,求的面積取得最大值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)試討論函數(shù)的單調(diào)性;

2)若不等式在區(qū)間上恒成立,的取值范圍,并證明:

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從1到9這9個(gè)數(shù)字中任取3個(gè)偶數(shù)和3個(gè)奇數(shù),組成無重復(fù)數(shù)字的六位數(shù),
(1)有多少個(gè)偶數(shù)?
(2)若奇數(shù)排在一起且偶數(shù)排在一起,這樣的六位數(shù)有多少個(gè)?
(3)若三個(gè)偶數(shù)不能相鄰,這樣的六位數(shù)有多少個(gè)?
(4)若三個(gè)偶數(shù)從左到右的排練順序必須由大到小,這樣的六位數(shù)有多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知6只小白鼠有1只被病毒感染,需要通過對(duì)其化驗(yàn)病毒來確定是否感染.下面是兩種化驗(yàn)方案:方案甲:逐個(gè)化驗(yàn),直到能確定感染為止.方案乙:將6只分為兩組,每組三個(gè),并將它們混合在一起化驗(yàn),若存在病毒,則表明感染在這三只當(dāng)中,然后逐個(gè)化驗(yàn),直到確定感染為止;若結(jié)果不含病毒,則在另外一組中逐個(gè)進(jìn)行化驗(yàn).

(1)求依據(jù)方案乙所需化驗(yàn)恰好為2次的概率.

(2)首次化驗(yàn)化驗(yàn)費(fèi)為10元,第二次化驗(yàn)化驗(yàn)費(fèi)為8元,第三次及其以后每次化驗(yàn)費(fèi)都是6元,列出方案甲所需化驗(yàn)費(fèi)用的分布列,并估計(jì)用方案甲平均需要體驗(yàn)費(fèi)多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解人們對(duì)于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如下表:

年齡

[5,15)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

頻數(shù)

5

10

15

10

5

5

支持“生育二胎”

4

5

12

8

2

1


(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表;

年齡不低于45歲的人

年齡低于45歲的人

合計(jì)

支持“生育二胎”

a=

c=

不支持“生育二胎”

b=

d=

合計(jì)


(2)判斷是否有99%的把握認(rèn)為以45歲為分界點(diǎn)對(duì)“生育二胎放開”政策的支持度有差異.

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

附表:K2=

查看答案和解析>>

同步練習(xí)冊答案