【題目】在直三棱柱中,底面為等腰直角三角形, , , 若、、別是棱、的中點(diǎn),則下列四個(gè)命題:

②三棱錐的外接球的表面積為;

③三棱錐的體積為

④直線與平面所成角為

其中正確的命題有__________.(把所有正確命題的序號(hào)填在答題卡上)

【答案】①②③

【解析】根據(jù)題意畫出如圖所示的直三棱柱

其中,底面為等腰直角三角形, , , 、、別是棱、的中點(diǎn).

對(duì)于①,取中點(diǎn),連接, 于點(diǎn),連接.

中點(diǎn), ,

∴四邊形為正方形,則

中, 分別為, 的中點(diǎn),則,且.

的中點(diǎn),且

∴四邊形為平行四邊形

,故正確;

對(duì)于②,易得,則.

,即

∴三棱錐的外接球的球心在線段的中點(diǎn)處,則外接球的半徑為

∴三棱錐的外接球的表面積為,故正確

對(duì)于③,易得, .

中, , ,同理可得,則三棱錐為正四面體,其體積為,故正確;

對(duì)于④,直線在平面上的投影為直線,則為直線與平面所成的角,在中, ,故不正確.

故答案為①②③.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形所在平面垂直于直角梯形所在平面于直線,且,

)設(shè)點(diǎn)為棱中點(diǎn),求證: 平面

)線段上是否存在一點(diǎn),使得直線與平面所成角的正弦值等于?若存在,試確定點(diǎn)的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的面積為,且,

(Ⅰ)若 的圖象與直線相鄰兩個(gè)交點(diǎn)間的最短距離為,且,求的面積

(Ⅱ)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,離心率,以兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)為頂點(diǎn)的四邊形的周長為8,面積為.

(1)求橢圓的方程;

(2)過原點(diǎn)的兩條直線, ,交橢圓, , , 四點(diǎn),若,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,棱底面,且, , , 的中點(diǎn).

(1)求證: 平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),將曲線上各點(diǎn)的橫坐標(biāo)都縮短為原來的倍,縱坐標(biāo)坐標(biāo)都伸長為原來的倍,得到曲線,在極坐標(biāo)系(與直角坐標(biāo)系取相同的單位長度,且以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,直線的極坐標(biāo)方程為

(1)求直線和曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市縣鄉(xiāng)教師流失現(xiàn)象非常嚴(yán)重,為了縣鄉(xiāng)孩子們能接受良好教育,某市今年要為兩所縣鄉(xiāng)中學(xué)招聘儲(chǔ)備未來三年的教師,現(xiàn)在每招聘一名教師需要1萬元,若三年后教師嚴(yán)重短缺時(shí)再招聘,由于各種因素,則每招聘一名教師需要3萬元,已知現(xiàn)在該市縣鄉(xiāng)中學(xué)無多余教師,為決策應(yīng)招聘多少縣鄉(xiāng)教師搜集并整理了該市50所縣鄉(xiāng)中學(xué)在過去三年內(nèi)的教師流失數(shù),得到如表的頻率分布表:

流失教師數(shù)

6

7

8

9

頻數(shù)

10

15

15

10

以這50所縣鄉(xiāng)中學(xué)流失教師數(shù)的頻率代替一所縣鄉(xiāng)中學(xué)流失教師數(shù)發(fā)生的概率,記表示兩所縣鄉(xiāng)中學(xué)在過去三年共流失的教師數(shù), 表示今年為兩所縣鄉(xiāng)中學(xué)招聘的教師數(shù).為保障縣鄉(xiāng)孩子教育不受影響,若未來三年內(nèi)教師有短缺,則第四年馬上招聘.

(1)求的分布列;

(2)若要求,確定的最小值;

(3)以未來四年內(nèi)招聘教師所需費(fèi)用的期望值為決策依據(jù),在之中選其一,應(yīng)選用哪個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雞的產(chǎn)蛋量與雞舍的溫度有關(guān),為了確定下一個(gè)時(shí)段雞舍的控制溫度,某企業(yè)需要了解雞舍的溫度 (單位:),對(duì)某種雞的時(shí)段產(chǎn)蛋量(單位:) 和時(shí)段投入成本(單位:萬元)的影響,為此,該企業(yè)收集了7個(gè)雞舍的時(shí)段控制溫度和產(chǎn)蛋量的數(shù)據(jù),對(duì)數(shù)據(jù)初步處理后得到了如圖所示的散點(diǎn)圖和表中的統(tǒng)計(jì)量的值.

其中.

(1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)更適宜作為該種雞的時(shí)段產(chǎn)蛋量關(guān)于雞舍時(shí)段控制溫度的回歸方程類型?(給判斷即可,不必說明理由)

(2)若用作為回歸方程模型,根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;

(3)已知時(shí)段投入成本的關(guān)系為,當(dāng)時(shí)段控制溫度為時(shí),雞的時(shí)段產(chǎn)蛋量及時(shí)段投入成本的預(yù)報(bào)值分別是多少?

附:①對(duì)于一組具有線性相關(guān)關(guān)系的數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年10月9日,教育部考試中心下發(fā)了《關(guān)于2017年普通高考考試大綱修訂內(nèi)容的通知》,在各科修訂內(nèi)容中明確提出,增加中華優(yōu)秀傳統(tǒng)文化的考核內(nèi)容,積極培育和踐行社會(huì)主義核心價(jià)值觀,充分發(fā)揮高考命題的育人功能和積極導(dǎo)向作用.宿州市教育部門積極回應(yīng),編輯傳統(tǒng)文化教材,在全市范圍內(nèi)開設(shè)書法課,經(jīng)典誦讀等課程.為了了解市民對(duì)開設(shè)傳統(tǒng)文化課的態(tài)度,教育機(jī)構(gòu)隨機(jī)抽取了200位市民進(jìn)行了解,發(fā)現(xiàn)支持開展的占,在抽取的男性市民120人中持支持態(tài)度的為80人.

(Ⅰ)完成列聯(lián)表并判斷是否有的把握認(rèn)為性別與支持與否有關(guān)?

(Ⅱ)為了進(jìn)一步征求對(duì)開展傳統(tǒng)文化的意見和建議,從抽取的200位市民中對(duì)不支持的按照分層抽樣的方法抽取5位市民,并從抽取的5人中再隨機(jī)選取2人進(jìn)行座談,求選取的2人恰好為1男1女的概率.

附: .

查看答案和解析>>

同步練習(xí)冊答案