【題目】2018年俄羅斯世界杯激戰(zhàn)正酣,某校工會對全校教職工在世界杯期間每天收看比賽的時間作了一次調(diào)查,得到如下頻數(shù)分布表:

收看時間

(單位:小時)

14

28

20

12

(1)若將每天收看比賽轉(zhuǎn)播時間不低于3小時的教職工定義為球迷,否則定義為非球迷,請根據(jù)頻數(shù)分布表補(bǔ)全列聯(lián)表:

合計

球迷

40

非球迷

合計

并判斷能否有90%的把握認(rèn)為該校教職工是否為球迷性別有關(guān);

(2)在全校球迷中按性別分層抽樣抽取6名,再從這6球迷中選取2名世界杯知識講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學(xué)期望.

附表及公式:

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

.

【答案】(1)有(2)見解析

【解析】分析:(1)根據(jù)題中數(shù)據(jù)填寫列聯(lián)表,由此計算觀測值,對照臨界值得出結(jié)論;

(2)由題意知抽取的6體育達(dá)人中有4名男職工,2名女職工,所以的可能取值為0,1,2,求出相對應(yīng)的概率值,即可求得答案.

詳解:(1)由題意得下表:

的觀測值為 .

所以有的把握認(rèn)為該校教職工是體育達(dá)人性別有關(guān).

(2)由題意知抽取的6體育達(dá)人中有4名男職工,2名女職工,

所以的可能取值為0,1,2.

, , ,

所以的分布列為

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】寫出下列命題的否定,并判斷其真假:

(1)任何有理數(shù)都是實(shí)數(shù);

(2)存在一個實(shí)數(shù),能使成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直三棱柱ABC﹣A1B1C1的所有棱長都為2,點(diǎn)P,Q分別為棱CC1 , BC的中點(diǎn),則四面體A1﹣B1PQ的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一兒童游樂場擬建造一個“蛋筒”型游樂設(shè)施,其軸截面如圖中實(shí)線所示.ABCD是等腰梯形,AB=20米,∠CBF=α(F在AB的延長線上,α為銳角).圓E與AD,BC都相切,且其半徑長為100﹣80sinα米.EO是垂直于AB的一個立柱,則當(dāng)sinα的值設(shè)計為多少時,立柱EO最矮?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an},{bn}都是單調(diào)遞增數(shù)列,若將這兩個數(shù)列的項(xiàng)按由小到大的順序排成一列(相同的項(xiàng)視為一項(xiàng)),則得到一個新數(shù)列{cn}.
(1)設(shè)數(shù)列{an},{bn}分別為等差、等比數(shù)列,若a1=b1=1,a2=b3 , a6=b5 , 求c20;
(2)設(shè){an}的首項(xiàng)為1,各項(xiàng)為正整數(shù),bn=3n , 若新數(shù)列{cn}是等差數(shù)列,求數(shù)列{cn} 的前n項(xiàng)和Sn;
(3)設(shè)bn=qn1(q是不小于2的正整數(shù)),c1=b1 , 是否存在等差數(shù)列{an},使得對任意的n∈N* , 在bn與bn+1之間數(shù)列{an}的項(xiàng)數(shù)總是bn?若存在,請給出一個滿足題意的等差數(shù)列{an};若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在區(qū)間上單調(diào)遞減,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ (m∈R)在區(qū)間[1,e]取得最小值4,則m=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20151210, 我國科學(xué)家屠呦呦教授由于在發(fā)現(xiàn)青蒿素和治療瘧疾的療法上的貢獻(xiàn)獲得諾貝爾醫(yī)學(xué)獎,以青蒿素類藥物為主的聯(lián)合療法已經(jīng)成為世界衛(wèi)生組織推薦的抗瘧疾標(biāo)準(zhǔn)療法,目前,國內(nèi)青蒿人工種植發(fā)展迅速,調(diào)查表明,人工種植的青蒿的長勢與海拔高度、土壤酸堿度、空氣濕度的指標(biāo)有極強(qiáng)的相關(guān)性,現(xiàn)將這三項(xiàng)的指標(biāo)分別記為,并對它們進(jìn)行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標(biāo)的值評定人工種植的青蒿的長勢等級:若,則長勢為一級;若,則長勢為二級;若,則長勢為三級;為了了解目前人工種植的青蒿的長勢情況,研究人員隨機(jī)抽取了10塊青蒿人工種植地,得到如下結(jié)果:

種植地編號

種植地編號

(1)在這10塊青蒿人工種植地中任取兩地,求這兩地的空氣濕度的指標(biāo)相同的概率;

(2)從長勢等級是一級的人工種植地中任取一地,其綜合指標(biāo)為,從長勢等級不是一級的人工種植地中任取一地,其綜合指標(biāo)為,記隨機(jī)變量,求的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)的焦距為4,其短軸的兩個端點(diǎn)與長軸的一個端點(diǎn)構(gòu)成正三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)F為橢圓C的左焦點(diǎn),M為直線x=﹣3上任意一點(diǎn),過F作MF的垂線交橢圓C于點(diǎn)P,Q.證明:OM經(jīng)過線段PQ的中點(diǎn)N.(其中O為坐標(biāo)原點(diǎn))

查看答案和解析>>

同步練習(xí)冊答案