(本題滿分14分)已知函數(shù)

(1)作出函數(shù)的圖象;
(2)寫出函數(shù)的單調(diào)區(qū)間;
(3)判斷函數(shù)的奇偶性,并用定義證明.

(1)見(jiàn)解析;(2)單調(diào)增區(qū)間為:;(3)見(jiàn)解析。

解析試題分析:………………………2分
如圖
………………………6分
(2)單調(diào)增區(qū)間為:………10分
(3)對(duì)任意,
為奇函數(shù)………………………14分
考點(diǎn):函數(shù)的圖像;函數(shù)的奇偶性;函數(shù)的單調(diào)性。
點(diǎn)評(píng):解決含絕對(duì)值的函數(shù)常用方法是:分段討論去掉絕對(duì)值符號(hào)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1)證明:是奇函數(shù);
(2)求的單調(diào)區(qū)間;
(3)寫出函數(shù)圖象的一個(gè)對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分13分)已知函數(shù)
(1) 求函數(shù)的極值;
(2)求證:當(dāng)時(shí),
(3)如果,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
已知二次函數(shù)的最小值為1,且
(1)求的解析式;
(2)若在區(qū)間上不單調(diào),求實(shí)數(shù)的取值范圍;
(3)在區(qū)間上,的圖象恒在的圖象上方,試確定實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分8分)已知奇函數(shù)
(1)求實(shí)數(shù)m的值,并在給出的直角坐標(biāo)系中畫出的圖象;
(2)若函數(shù)在區(qū)間[-1,-2]上單調(diào)遞增,試確定的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)=
(1)證明:上是增函數(shù);(2)求上的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)已知函數(shù)處取得極值2。
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)當(dāng)m滿足什么條件時(shí),在區(qū)間為增函數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分) 已知函數(shù)。
(1)求函數(shù)y=的零點(diǎn);
(2) 若y=的定義域?yàn)閇3,9], 求的最大值與最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/18/3/ggfzl.png" style="vertical-align:middle;" />的單調(diào)函數(shù)是奇函數(shù),當(dāng)時(shí),.
(I)求的值;
(II)求的解析式;
(III)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案