【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞)上單調(diào)遞減的函數(shù)是( )

A.y=x2B.C.y=2|x|D.y=cosx

【答案】B

【解析】

A. 根據(jù)奇偶性的定義判斷奇偶性,根據(jù)的圖象判斷單調(diào)性.B. 根據(jù)奇偶性的定義判斷奇偶性,根據(jù) 的圖象判斷單調(diào)性.C. 根據(jù)奇偶性的定義判斷奇偶性,根據(jù) 的圖象判斷單調(diào)性.D. 根據(jù)奇偶性的定義判斷奇偶性,根據(jù)的圖象判斷單調(diào)性.

因為,所以是偶函數(shù),又因為在(0,+∞)上單調(diào)遞增,故A錯誤.

因為,所以是偶函數(shù),又因為,在(0,+∞)上單調(diào)遞減,故B正確.

因為,所以 是偶函數(shù),又因為 (0,+∞)上單調(diào)遞增,故C錯誤.

因為,所以是偶函數(shù),又因為 (0,+∞)上不單調(diào),故D錯誤.

故選;D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是雙曲線的左右焦點,過且斜率為1的直線與兩條漸近線分別交于兩點,若,則雙曲線的離心率為( )

A. B. C. D.

【答案】B

【解析】設(shè)直線方程為,與漸近線方程聯(lián)立方程組解得因為,所以 ,選B.

點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標(biāo)的范圍等.

型】單選題
結(jié)束】
10

【題目】設(shè)是兩條不同的直線, 是兩個不同的平面,則下列命題中正確的是( )

A. , ,則

B. , ,則

C. , , ,則

D. ,且,點,直線,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的圖象為C,如下結(jié)論中正確的是(

①圖象C關(guān)于直線對稱;②函數(shù)在區(qū)間內(nèi)是增函數(shù);

③圖象C關(guān)于點對稱;④由的圖象向右平移個單位長度可以得到圖象C

A.①③B.②③C.①②③D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖的多面體中,EF⊥平面AEB,AEEB,ADEFEFBC,BC=2AD=4,EF=3,AE=BE=2,GBC的中點.

(Ⅰ)求證:AB∥平面DEG

(Ⅱ)求二面角C-DF-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,平面⊥平面, ,

(Ⅰ)求證: ⊥平面;

(Ⅱ)求證: ;

(Ⅲ)若點在棱上,且平面,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是公差不為零的等差數(shù)列,滿足,且、成等比數(shù)列.

(1)求數(shù)列的通項公式;

(2)設(shè)數(shù)列滿足,求數(shù)列的前項和.

【答案】(1);(2)

【解析】試題分析:1)設(shè)等差數(shù)列 的公差為,由a3=7,且、、成等比數(shù)列.可得,解之得即可得出數(shù)列的通項公式;

2)由(1)得,則,由裂項相消法可求數(shù)列的前項和.

試題解析:(1)設(shè)數(shù)列的公差為,且由題意得

,解得,

所以數(shù)列的通項公式.

(2)由(1)得

,

.

型】解答
結(jié)束】
18

【題目】四棱錐的底面為直角梯形,,,為正三角形.

(1)點為棱上一點,若平面,求實數(shù)的值;

(2)求點B到平面SAD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;

(2)求函數(shù)f(x)的最大值及取得最大值時x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x|(x﹣a),a為實數(shù).

(1)若函數(shù)f(x)為奇函數(shù),求實數(shù)a的值;

(2)若函數(shù)f(x)在[0,2]為增函數(shù),求實數(shù)a的取值范圍;

(3)是否存在實數(shù)a(a<0),使得f(x)在閉區(qū)間上的最大值為2,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的最小正周期;

(2)當(dāng)時,

(ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;

(ⅱ)求函數(shù)的最大值最小值,并分別求出使該函數(shù)取得最大值最小值時的自變量的值.

查看答案和解析>>

同步練習(xí)冊答案