【題目】已知拋物線Cy2=2x的焦點(diǎn)為F,過焦點(diǎn)F的直線交拋物線于A,B兩點(diǎn),過A,B作準(zhǔn)線的垂線交準(zhǔn)線與P,Q兩點(diǎn).RPQ的中點(diǎn).

1)證明:以PQ為直徑的圓恒過定點(diǎn)F

2)證明:ARFQ

【答案】(1)證明見解析(2)證明見解析

【解析】

1)求得拋物線的焦點(diǎn)F,設(shè)直線l的方程為x=my+,聯(lián)立拋物線方程,設(shè)Ay1),B,y2),運(yùn)用韋達(dá)定理,求得拋物線的準(zhǔn)線方程,可得P,Q,R的坐標(biāo),

求得,,由向量垂直的條件,即可得證;

2)設(shè)AR的斜率為k1,FQ的斜率為k2,運(yùn)用直線的斜率公式和兩直線平行的條件,以及韋達(dá)定理,即可得證.

證明:(1)拋物線Cy2=2x的焦點(diǎn)F0),設(shè)直線l的方程為x=my+,

聯(lián)立拋物線方程可得y2-2my-1=0

設(shè)A,y1),B,y2),則y1+y2=2my1y2=-1,

拋物線的準(zhǔn)線方程為x=-,可得P-,y1),Q-,y2),R-,),

=1-y1),=1-y2),可得=1+y1y2=1-1=0

PFQF,以PQ為直徑的圓恒過定點(diǎn)F;

2)設(shè)AR的斜率為k1FQ的斜率為k2,

k2==-y2,

k1=====-y2

k1=k2,

ARFQ

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求在區(qū)間上的最值;

(2)討論函數(shù)的單調(diào)性;

(3)當(dāng)時(shí),有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),常數(shù)).

1)當(dāng)時(shí),討論函數(shù)的奇偶性并說明理由;

2)若函數(shù)在區(qū)間上單調(diào),求正數(shù)的取值范圍;

3)若不等式對任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為創(chuàng)建全國衛(wèi)生城市,引入某公司的智能垃圾處理設(shè)備.已知每臺設(shè)備每月固定維護(hù)成本萬元,每處理一萬噸垃圾需增加萬元維護(hù)費(fèi)用,每月處理垃圾帶來的總收益萬元與每月垃圾處理量(萬噸)滿足關(guān)系:(注:總收益=總成本+利潤)

1)寫出每臺設(shè)備每月處理垃圾獲得的利潤關(guān)于每月垃圾處理量的函數(shù)關(guān)系;

2)該市計(jì)劃引入臺這種設(shè)備,當(dāng)每臺每月垃圾處理量為何值時(shí),所獲利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(為常數(shù))

(1)若

①求函數(shù)在區(qū)間上的最大值及最小值。

②若過點(diǎn)可作函數(shù)的三條不同的切線,求實(shí)數(shù)的取值范圍。

(2)當(dāng)時(shí),不等式恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在棱長為的正方體中,分別是棱,的中點(diǎn).

求證:(1)四邊形是梯形;

(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如表:

年份

2012

2013

2014

2015

2016

2017

年份代碼t

1

2

3

4

5

6

年產(chǎn)量y(萬噸)

6.6

6.7

7

7.1

7.2

7.4

Ⅰ)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;

(Ⅱ)根據(jù)線性回歸方程預(yù)測2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:.(參考數(shù)據(jù):,計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐PABC中,ACBC,ACBC2PAPBPC3,OAB中點(diǎn),EPB中點(diǎn).

1)證明:平面PAB⊥平面ABC

2)求點(diǎn)B到平面OEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線方程為,其中

1)求證:直線恒過定點(diǎn);

2)當(dāng)變化時(shí),求點(diǎn)到直線的距離的最大值;

3)若直線分別與軸、軸的負(fù)半軸交于兩點(diǎn),求面積的最小值及此時(shí)的直線方程.

查看答案和解析>>

同步練習(xí)冊答案