已知函數(shù).
(1)若,求的取值范圍;
(2)設(shè)△的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,已知為銳角,,,,求的值.
(1) (2)
解析試題分析:
(1)首先利用正弦和差角公式展開,再利用正余弦的二倍角與輔助角公式化簡(jiǎn),得到,則從x的范圍得到的范圍,再利用正弦函數(shù)的圖像得到的取值范圍,進(jìn)而得到的取值范圍.
(2)把帶入第(1)問得到的解析式,化簡(jiǎn)求值得到角A,再利用角A的余弦定理,可以求出a的值,再根據(jù)正弦定理,可以求的B角的正弦值,再利用正余弦之間的關(guān)系可以求的A,B的正余弦值,根據(jù)余弦的和差角公式即可得到的值.
試題解析:
(1)
.4分
∵,∴,.
∴. .7分
(2)由,得,
又為銳角,所以,又,,
所以,. .10分
由,得,又,從而,.
所以, 14分
考點(diǎn):三角形正余弦定理 正余弦和差角與倍角公式 正弦函數(shù)圖像
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,A,B是海面上位于東西方向相距海里的兩個(gè)觀測(cè)點(diǎn),現(xiàn)位于A點(diǎn)北偏東45°,B點(diǎn)北偏西60°的D點(diǎn)有一艘輪船發(fā)出求救信號(hào),位于B點(diǎn)南偏西60°且與B點(diǎn)相距海里的C點(diǎn)的救援船立即即前往營(yíng)救,其航行速度為30海里/小時(shí),該救援船到達(dá)D點(diǎn)需要多長(zhǎng)時(shí)間?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在DABC中,角A、B、C的對(duì)邊分別為a、b、c,且角A、B都是銳角,a=6,b=5,.
(1) 求和的值;
(2) 設(shè)函數(shù),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖像上兩相鄰最高點(diǎn)的坐標(biāo)分別為.
(1)求的值;
(2)在中,分別是角的對(duì)邊,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,設(shè)函數(shù),若函數(shù)的圖象與的圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱.
(1)求函數(shù)在區(qū)間上的最大值,并求出此時(shí)的取值;
(2)在中,分別是角的對(duì)邊,若,,,求邊的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,a,b,c分別為角A,B,C的對(duì)邊.已知a=1,b=2,sinC=(其中C為銳角).
(1)求邊c的值.
(2)求sin(C-A)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com