已知函數(shù)的周期為.

(1)若,求它的振幅、初相;
(2)在給定的平面直角坐標系中作出該函數(shù)在的圖像;
(3)當時,根據(jù)實數(shù)的不同取值,討論函數(shù)的零點個數(shù).
(1),;(2)詳見解析;(3)當時,函數(shù)無零點;當時,函數(shù)僅有一個零點;當時,函數(shù)有兩個零點;當時,函數(shù)有三個零點.

試題分析:(1)先由輔助角公式化簡,然后由周期為確定,可確定,從而可寫出振幅、初相;(2)根據(jù)正弦函數(shù)的五點作圖法進行作圖即可;(3)將的零點問題,轉(zhuǎn)化為直線與函數(shù)的圖像交點的個數(shù)問題,結(jié)合(2)中作出的函數(shù)的圖像,對直線的位置進行討論,可得答案.
試題解析:(1)化為    1分
得,    2分
(1)函數(shù)的振幅是,初相為    4分
(2)列表

0














2
0

0

   8分
(3)函數(shù)的零點個數(shù),即函數(shù)與函數(shù)的交點個數(shù),由(2)圖像知:
①當時,函數(shù)無零點;
②當時,函數(shù)僅有一個零點;
③當時,函數(shù)有兩個零點;
④當時,函數(shù)有三個零點    12分.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)平面向量,,函數(shù)。
(Ⅰ)求函數(shù)的值域和函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)當,且時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

將函數(shù)f(x)=sin(2xθ)(-<θ<)的圖象向右平移φ(φ>0)個單位長度后得到函數(shù)g(x)的圖象,若f(x),g(x)的圖象都經(jīng)過點P(0,),則φ的值可以是(  ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)=Asin(ωxφ),x∈R(其中A>0,ω>0,-φ),其部分圖象如圖所示,將f(x)的圖象縱坐標不變,橫坐標變成原來的2倍,再向左平移1個單位得到g(x)的圖象,則函數(shù)g(x)的解析式為(  ).
A.g(x)=sin(x+1)B.g(x)=sin(x+1)
C.g(x)=sinD.g(x)=sin

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

將函數(shù)的圖像向左平移個單位,所得圖像關(guān)于軸對稱,則的最小值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

要得到函數(shù)的圖像,只需將函數(shù)的圖像(    )
A.向右平移個單位B.向右平移個單位
C.向左平移個單位D.向車平移個單位

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列函數(shù)中最小正周期為的是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)y=sin2x的圖象向右平移個單位,得到的圖象關(guān)于直線對稱,則的最小值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

要得到函數(shù)的圖象,只要將函數(shù)的圖象(  )
A.向左平移2個單位B.向右平移2個單位
C.向左平移個單位D.向右平移個單位

查看答案和解析>>

同步練習冊答案