(2012•門頭溝區(qū)一模)已知tan(α-
π
4
)=
1
3
,則sin2α等于( 。
分析:利用兩角和與差的正切函數(shù)公式及特殊角的三角函數(shù)值化簡已知的等式,整理后求出tanα的值,然后將所求的式子分母看做“1”,利用同角三角函數(shù)間的基本關(guān)系化為sin2α+cos2α,分子利用二倍角的正弦函數(shù)公式化簡,然后分子分母同時(shí)除以cos2α,再利用同角三角函數(shù)間的基本關(guān)系弦化切后,將tanα的值代入即可求出值.
解答:解:∵tan(α-
π
4
)=
tanα-1
1+tanα
=
1
3
,
∴tanα=2,
則sin2α=
2sinαcosα
sin2α+cos2α
=
2tanα
tan2α+1
=
2×2
22+1
=
4
5

故選C
點(diǎn)評(píng):此題考查了二倍角的正弦函數(shù)公式,兩角和與差的正切函數(shù)公式,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握公式及基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•門頭溝區(qū)一模)已知函數(shù)f(x)=x3+ax2+bx-1在x=1處有極值-1.
( I)求實(shí)數(shù)a,b的值;
( II)求函數(shù)g(x)=ax+lnx的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•門頭溝區(qū)一模)已知集合A={x|x2-2x-3=0},那么滿足B⊆A的集合B有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•門頭溝區(qū)一模)給出定義:若m-
1
2
≤x<m+
1
2
(其中m為整數(shù)),則m叫離實(shí)數(shù)x最近的整數(shù),記作[x]=m,已知f(x)=|[x]-x|,下列四個(gè)命題:
①函數(shù)f(x)的定義域?yàn)镽,值域?yàn)?span id="niphrzb" class="MathJye">[0,
1
2
]; ②函數(shù)f(x)是R上的增函數(shù);
③函數(shù)f(x)是周期函數(shù),最小正周期為1;  ④函數(shù)f(x)是偶函數(shù),
其中正確的命題的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•門頭溝區(qū)一模)己知某幾何體的三視圖如圖所示,則其體積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•門頭溝區(qū)一模)如圖所示的程序框圖輸出的結(jié)果是
1023
1023

查看答案和解析>>

同步練習(xí)冊(cè)答案