(2009•黃岡模擬)由一組樣本數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn)得到的回歸直線方程為
?
y
=x+2
,且
.
x
=
1
n
n
i=1
xi
 
 
.
y
=
1
n
n
i=1
yi
,則下列命題中真命題的個數(shù)為
①直線
?
y
=x+2
必經(jīng)過點(
.
x
,
.
y
)

②若x增加一個單位,則y的值估計增加1個單位;
③當相關(guān)系數(shù)r>r0.05時,y與x之間具有相關(guān)關(guān)系.(  )
分析:①回歸直線
?
y
=x+2
必過樣本中心點;
②在回歸方程
?
y
=x+2
中,利用系數(shù)的意義,即可得到結(jié)論;
③相關(guān)系數(shù)r>r0.05,相關(guān)系數(shù)的絕對值約接近1,得到結(jié)論.
解答:解:①回歸直線
?
y
=x+2
必過樣本中心點,即定點(
.
x
.
y
)
;是真命題;
②在回歸方程
?
y
=x+2
中,當x每增加一個單位時,
y
就增加1個單位,是真命題,
③當相關(guān)系數(shù)r>r0.05時,y與x之間具有相關(guān)關(guān)系,是真命題.
故選D.
點評:本題考查線性回歸方程,相關(guān)系數(shù).是一個基礎(chǔ)性題目.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2009•黃岡模擬)某地正處于地震帶上,預計20年后該地將發(fā)生地震.當?shù)貨Q定重新選址建設(shè)新城區(qū),同時對舊城區(qū)進行拆除.已知舊城區(qū)的住房總面積為64am2,每年拆除的數(shù)量相同;新城區(qū)計劃用十年建成,第一年建設(shè)住房面積2am2,開始幾年每年以100%的增長率建設(shè)新住房,然后從第五年開始,每年都比上一年減少2am2
(1)若10年后該地新、舊城區(qū)的住房總面積正好比目前翻一番,則每年舊城區(qū)拆除的住房面積是多少m2
(2)設(shè)第n(1≤n≤10且n∈N)年新城區(qū)的住房總面積為Snm2,求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•黃岡模擬)如圖是一幾何體的平面展開圖,其中ABCD為正方形,E、F分別為PA、PD的中點.在此幾何體中,給出下面四個結(jié)論:
①直線BE與直線CF異面;
②直線BE與直線AF異面;
③直線EF∥平面PBC;
④平面BCE⊥平面PAD.
其中正確的命題的個數(shù)是
2
2
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•黃岡模擬)定義在R上的偶函數(shù)y=f(x)滿足:
①對x∈R都有f(x+6)=f(x)+f(3)
②f(-5)=-1;
③當x1,x2∈[0,3]且x1≠x2時,都有
f(x1)-f(x2)x1-x2
>0則
(1)f(2009)=
-1
-1

(2)若方程f(x)=0在區(qū)間[a,6-a]上恰有3個不同實根,實數(shù)a的取值范圍是
(-9,-3]
(-9,-3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•黃岡模擬)已知函數(shù)f(x)=
1-x2
1+x+x2
(x∈R)

(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)若(et+2)x2+etx+et-2≥0對滿足|x|≤1的任意實數(shù)x恒成立,求實數(shù)t的取值范圍(這里e是自然對數(shù)的底數(shù));
(Ⅲ)求證:對任意正數(shù)a、b、λ、μ,恒有f[(
λa+μb
λ+μ
)
2
]-f(
λa2b2
λ+μ
)≥(
λa+μb
λ+μ
)2
-
λa2b2
λ+μ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•黃岡模擬)四個大小相同的小球分別標有數(shù)字1、1、2、2,把它們放在一個盒子里,從中任意摸出兩個小球,它們所標有的數(shù)字分別為x,y,記ξ=x+y.
(1)求隨機變量ξ的分布列及數(shù)學期望;
(2)設(shè)“函數(shù)f(x)=x2-ξx-1在區(qū)間(2,3)上有且只有一個零點”為事件A,求事件A發(fā)生的概率.

查看答案和解析>>

同步練習冊答案