【題目】已知橢圓長(zhǎng)軸的一個(gè)端點(diǎn)是拋物線的焦點(diǎn),且橢圓焦點(diǎn)與拋物線焦點(diǎn)的距離是1。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓的左右端點(diǎn),為原點(diǎn),是橢圓上異于的任意一點(diǎn),直線分別交軸于,問是否為定值,說(shuō)明理由。
【答案】(1);(2)為定值,理由見解析.
【解析】
(1)根據(jù)拋物線的焦點(diǎn)求得,根據(jù)橢圓焦點(diǎn)與拋物線焦點(diǎn)的距離求得,由此求得,進(jìn)而求得橢圓的標(biāo)準(zhǔn)方程.
(2)設(shè)出點(diǎn)坐標(biāo),求得直線的方程,由此求得兩點(diǎn)的坐標(biāo),代入化簡(jiǎn),證得為定值.
(1)依題意可知,拋物線的焦點(diǎn)坐標(biāo)為,故,由于橢圓焦點(diǎn)與拋物線焦點(diǎn)的距離是,而,故.所以.所以橢圓的標(biāo)準(zhǔn)方程為.
(2)設(shè),代入橢圓方程并化簡(jiǎn)得,且.所以直線:,直線:,令分別代入直線的方程,求得,所以為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2022年北京冬奧會(huì)的申辦成功與“3億人上冰雪”口號(hào)的提出,將冰雪這個(gè)冷項(xiàng)目迅速炒“熱”.北京某綜合大學(xué)計(jì)劃在一年級(jí)開設(shè)冰球課程,為了解學(xué)生對(duì)冰球運(yùn)動(dòng)的興趣,隨機(jī)從該校一年級(jí)學(xué)生中抽取了100人進(jìn)行調(diào)查,其中女生中對(duì)冰球運(yùn)動(dòng)有興趣的占,而男生有10人表示對(duì)冰球運(yùn)動(dòng)沒有興趣額.
(1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對(duì)冰球是否有興趣與性別有關(guān)”?
有興趣 | 沒興趣 | 合計(jì) | |
男 | 55 | ||
女 | |||
合計(jì) |
(2)已知在被調(diào)查的女生中有5名數(shù)學(xué)系的學(xué)生,其中3名對(duì)冰球有興趣,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至少有2人對(duì)冰球有興趣的概率.
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024> | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)滿足以下兩個(gè)條件的有窮數(shù)列為階“期待數(shù)列”:①;②.
(1)分別寫出一個(gè)單調(diào)遞增的3階和4階“期待數(shù)列”;
(2)若某2013階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項(xiàng)公式;
(3)記階“期待數(shù)列”的前項(xiàng)和為,試證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列是公差不為0的等差數(shù)列,,數(shù)列是等比數(shù)列,且,,,數(shù)列的前n項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求的前n項(xiàng)和;
(3)若對(duì)恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為定義域上的奇函數(shù),且在上是單調(diào)遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,且公差不為0,若,則( )
A.18B.9C.27D.81
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)是軸左側(cè)(不含軸)一點(diǎn),拋物線上存在不同的兩點(diǎn)、,滿足、的中點(diǎn)均在拋物線上.
(1)求拋物線的焦點(diǎn)到準(zhǔn)線的距離;
(2)設(shè)中點(diǎn)為,且,,證明:;
(3)若是曲線()上的動(dòng)點(diǎn),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求證:對(duì)任意實(shí)數(shù),都有;
(2)若,是否存在整數(shù),使得在上,恒有成立?若存在,請(qǐng)求出的最大值;若不存在,請(qǐng)說(shuō)明理由.()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線的方程為,過原點(diǎn)作斜率為的直線和曲線相交,另一個(gè)交點(diǎn)記為,過作斜率為的直線和曲線相交,另一個(gè)交點(diǎn)記為,過作斜率為的直線和曲線相交,另一個(gè)交點(diǎn)記為,……,如此下去,一般地,過作斜率為的直線和曲線相交,另一個(gè)交點(diǎn)記為,設(shè)點(diǎn).
(1)指出,并求與的關(guān)系式;
(2)求的通項(xiàng)公式,并指出點(diǎn)列,,……,,……向哪一點(diǎn)無(wú)限接近?說(shuō)明理由;
(3)令,數(shù)列的前項(xiàng)和為,設(shè),求所有可能的乘積的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方體中,,,,平面截長(zhǎng)方體得到一個(gè)矩形,且,.
(1)求截面把該長(zhǎng)方體分成的兩部分體積之比;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com