已知函數(shù).
(I)討論的單調(diào)性;
(Ⅱ)若在(1,+)恒成立,求實數(shù)a的取值范圍.
(I)當時,在上是增函數(shù).在上是減函數(shù).當時,在上是增函數(shù).(II).
解析試題分析:(I)首先應(yīng)明確函數(shù)的定義域為,
其次求導數(shù),討論①當時,②當時,
導函數(shù)值的正負,求得函數(shù)的單調(diào)性.
(II)注意到,即,構(gòu)造函數(shù),研究其單調(diào)性
在為增函數(shù),從而由,得到.
試題解析:(I)函數(shù)的定義域為,
由于
①當,即時,恒成立,
所以在上都是增函數(shù);
②當,即時,
由得或,
又由得,
所以在上是增函數(shù).在上是減函數(shù).
綜上知當時,在上是增函數(shù).在上是減函數(shù).
當時,在上是增函數(shù).
(II),即,因為,
所以
令,則
在上,,得,即,
故在為增函數(shù),,
所以.
考點:一元二次不等式的解法,應(yīng)用導數(shù)研究函數(shù)的單調(diào)性.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),其中.
(1)當時,求函數(shù)在處的切線方程;
(2)若函數(shù)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求的取值范圍;
(3)已知,如果存在,使得函數(shù)在處取得最小值,試求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),,,其中,且.
⑴當時,求函數(shù)的最大值;
⑵求函數(shù)的單調(diào)區(qū)間;
⑶設(shè)函數(shù)若對任意給定的非零實數(shù),存在非零實數(shù)(),使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)若曲線在x=l和x=3處的切線互相平行,求a的值及函數(shù)的單調(diào)區(qū)間;
(2)設(shè),若對任意,均存在,使得,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
函數(shù).
(1)若,函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求實數(shù)的取值范圍;
(2)設(shè),若對任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),其中a>0.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若直線是曲線的切線,求實數(shù)a的值;
(Ⅲ)設(shè),求在區(qū)間上的最大值(其中e為自然對的底數(shù))。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)當時,求的極值;(2)當時,討論的單調(diào)性;
(3)若對任意的恒有成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com