【題目】如圖,在三棱錐D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC點(diǎn),F(xiàn)棱AC上,且AF=3FC.
(1)求三棱錐D﹣ABC的體積;
(2)求證:AC⊥平面DEF;
(3)若M為DB中點(diǎn),N在棱AC上,且CN= CA,求證:MN∥平面DEF.
【答案】
(1)解:∵△BCD是正三角形,AB⊥平面BCD,AB=BC=a,
∴三棱錐D﹣ABC的體積V= =
(2)證明:取AC的中點(diǎn)H,∵AB=BC,∴BH⊥AC.
∵AF=3FC,∴F為CH的中點(diǎn).
∵E為BC的中點(diǎn),∴EF∥BH.則EF⊥AC.
∵△BCD是正三角形,∴DE⊥BC.
∵AB⊥平面BCD,∴AB⊥DE.
∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.
∵DE∩EF=E,∴AC⊥平面DEF
(3)解:連CM,設(shè)CM∩DE=O,連OF.
由條件知,O為△BCD的重心,CO= CM.
當(dāng)CN= CA時(shí),CF= CN,∴MN∥OF.
∵M(jìn)N平面DEF,OF平面DEF,
∴MN∥平面DEF.
【解析】(1)直接利用體積公式,求三棱錐D﹣ABC的體積;(2)要證AC⊥平面DEF,先證AC⊥DE,再證AC⊥EF,即可.(3)M為BD的中點(diǎn),連CM,設(shè)CM∩DE=O,連OF,只要MN∥OF即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解構(gòu)成空間幾何體的基本元素的相關(guān)知識(shí),掌握點(diǎn)、線、面是構(gòu)成幾何體的基本元素,以及對(duì)直線與平面平行的判定的理解,了解平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求的極值;
(Ⅱ)當(dāng)時(shí),討論的單調(diào)性;
(Ⅲ)若對(duì)于任意的都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了得到函數(shù)y=2sin(2x+ )的圖象,只需把函數(shù)y=2sinx的圖象( )
A.向左平移 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍(縱坐標(biāo)不變)
B.向左平移 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的 倍(縱坐標(biāo)不變)
C.各點(diǎn)的縱坐標(biāo)不變、橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,再把所得圖象向左平移 個(gè)單位長(zhǎng)度
D.各點(diǎn)的縱坐標(biāo)不變、橫坐標(biāo)變?yōu)樵瓉?lái)的 倍,再把所得圖象向左平移 個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求證: ;
(2)設(shè)函數(shù) ,且有兩個(gè)不同的零點(diǎn) ,
①求實(shí)數(shù)的取值范圍; ②求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè){an}是等差數(shù)列,數(shù)列{an}的前n項(xiàng)和為Sn , {bn}是各項(xiàng)都為正數(shù)的等比數(shù)列,且a1=b1=1,a3+b2=7,S2+b2=6 (Ⅰ)求{an},{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{anbn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若x,y滿足約束條件 ,且向量 =(3,2), =(x,y),則 的取值范圍( )
A.[ ,5]
B.[ ,5]
C.[ ,4]
D.[ ,4]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: ()的右焦點(diǎn)在直線: 上,且橢圓上任意兩個(gè)關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)與橢圓上任意一點(diǎn)的連線的斜率之積為.
(1)求橢圓的方程;
(2)若直線經(jīng)過(guò)點(diǎn),且與橢圓有兩個(gè)交點(diǎn), ,是否存在直線: (其中)使得, 到的距離, 滿足恒成立?若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題p:若a、b∈R,則|a|+|b|>1是|a+b|>1的充分而不必要條件;命題q:函數(shù)y= 的定義域是(﹣∞,﹣1]∪[3,+∞),則( )
A.“p或q”為假
B.“p且q”為真
C.p真q假
D.p假q真
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若橢圓的對(duì)稱(chēng)軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的和為18,焦距為6,則橢圓的方程為( )
A.
B.
C.或
D.以上都不對(duì)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com