【題目】如圖,在三棱錐D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC點(diǎn),F(xiàn)棱AC上,且AF=3FC.

(1)求三棱錐D﹣ABC的體積;
(2)求證:AC⊥平面DEF;
(3)若M為DB中點(diǎn),N在棱AC上,且CN= CA,求證:MN∥平面DEF.

【答案】
(1)解:∵△BCD是正三角形,AB⊥平面BCD,AB=BC=a,

∴三棱錐D﹣ABC的體積V= =


(2)證明:取AC的中點(diǎn)H,∵AB=BC,∴BH⊥AC.

∵AF=3FC,∴F為CH的中點(diǎn).

∵E為BC的中點(diǎn),∴EF∥BH.則EF⊥AC.

∵△BCD是正三角形,∴DE⊥BC.

∵AB⊥平面BCD,∴AB⊥DE.

∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.

∵DE∩EF=E,∴AC⊥平面DEF


(3)解:連CM,設(shè)CM∩DE=O,連OF.

由條件知,O為△BCD的重心,CO= CM.

當(dāng)CN= CA時(shí),CF= CN,∴MN∥OF.

∵M(jìn)N平面DEF,OF平面DEF,

∴MN∥平面DEF.


【解析】(1)直接利用體積公式,求三棱錐D﹣ABC的體積;(2)要證AC⊥平面DEF,先證AC⊥DE,再證AC⊥EF,即可.(3)M為BD的中點(diǎn),連CM,設(shè)CM∩DE=O,連OF,只要MN∥OF即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解構(gòu)成空間幾何體的基本元素的相關(guān)知識(shí),掌握點(diǎn)、線、面是構(gòu)成幾何體的基本元素,以及對(duì)直線與平面平行的判定的理解,了解平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

)當(dāng)時(shí),求的極值;

Ⅱ)當(dāng)時(shí),討論的單調(diào)性;

)若對(duì)于任意的都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了得到函數(shù)y=2sin(2x+ )的圖象,只需把函數(shù)y=2sinx的圖象(
A.向左平移 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍(縱坐標(biāo)不變)
B.向左平移 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的 倍(縱坐標(biāo)不變)
C.各點(diǎn)的縱坐標(biāo)不變、橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,再把所得圖象向左平移 個(gè)單位長(zhǎng)度
D.各點(diǎn)的縱坐標(biāo)不變、橫坐標(biāo)變?yōu)樵瓉?lái)的 倍,再把所得圖象向左平移 個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求證: ;

(2)設(shè)函數(shù) ,且有兩個(gè)不同的零點(diǎn) ,

①求實(shí)數(shù)的取值范圍; ②求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè){an}是等差數(shù)列,數(shù)列{an}的前n項(xiàng)和為Sn , {bn}是各項(xiàng)都為正數(shù)的等比數(shù)列,且a1=b1=1,a3+b2=7,S2+b2=6 (Ⅰ)求{an},{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{anbn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若x,y滿足約束條件 ,且向量 =(3,2), =(x,y),則 的取值范圍(
A.[ ,5]
B.[ ,5]
C.[ ,4]
D.[ ,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 )的右焦點(diǎn)在直線 上,且橢圓上任意兩個(gè)關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)與橢圓上任意一點(diǎn)的連線的斜率之積為.

(1)求橢圓的方程;

(2)若直線經(jīng)過(guò)點(diǎn),且與橢圓有兩個(gè)交點(diǎn) ,是否存在直線 (其中)使得 的距離, 滿足恒成立?若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題p:若a、b∈R,則|a|+|b|>1是|a+b|>1的充分而不必要條件;命題q:函數(shù)y= 的定義域是(﹣∞,﹣1]∪[3,+∞),則(
A.“p或q”為假
B.“p且q”為真
C.p真q假
D.p假q真

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若橢圓的對(duì)稱(chēng)軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的和為18,焦距為6,則橢圓的方程為( )
A.
B.
C.
D.以上都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案