【題目】已知奇函數(shù)是定義在R上的單調(diào)函數(shù),若函數(shù)恰有個零點,則的取值范圍是( )

A. B. C. D.

【答案】D

【解析】

利用函數(shù)與方程的關系,由函數(shù)的奇偶性和單調(diào)性,進行轉(zhuǎn)化,利用參數(shù)分離法進行求解即可.

g(﹣x)=fx2+fa2|x|)=gx),∴gx)是偶函數(shù),

gx)=fx2+fa2|x|)恰有4個零點,

等價于當x0時,gx)有兩個不同的零點,

fx)是奇函數(shù),∴由gx)=fx2+fa2|x|)=0,

fx2)=﹣fa2|x|)=f2|x|a),

fx)是單調(diào)函數(shù),∴x22|x|a,即﹣ax22|x|,

x0時,﹣ax22|x|=x22x有兩個根即可,

hx)=x22x=(x121,

要使當x0時,﹣ax22|x|有兩個根,

則﹣1<﹣a0,即0a1

即實數(shù)a的取值范圍是(0,1),

故選:D

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某部門在同一上班高峰時段對甲、乙兩地鐵站各隨機抽取了50名乘客,統(tǒng)計其乘車等待時間(指乘客從進站口到乘上車的時間,乘車等待時間不超過40分鐘).將統(tǒng)計數(shù)據(jù)按分組,制成頻率分布直方圖:

假設乘客乘車等待時間相互獨立.

(1)在上班高峰時段,從甲站的乘客中隨機抽取1人,記為;從乙站的乘客中隨機抽取1人,記為.用頻率估計概率,求“乘客,乘車等待時間都小于20分鐘”的概率;

(2)從上班高峰時段,從乙站乘車的乘客中隨機抽取3人,表示乘車等待時間小于20分鐘的人數(shù),用頻率估計概率,求隨機變量的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)擬建一個糧倉,如圖1所示,糧倉的軸截而如圖2所示,EDECADBC,BCABEFAB,CDEF于點GEFFC10m

1)設∠CFBθ,求糧倉的體積關于θ的函數(shù)關系式;

2)當sinθ為何值時,糧倉的體積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列滿足對任意的恒成立,為其前項的和,且

(1)求數(shù)列的通項;

(2)數(shù)列滿足,其中

①證明:數(shù)列為等比數(shù)列;

②求集合

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圓錐如圖①所示,圖②是它的正(主)視圖.已知圓的直徑為, 是圓周上異于的一點, 的中點.

(I)求該圓錐的側(cè)面積S;

(II)求證:平面⊥平面;

(III)若∠CAB=60°,在三棱錐中,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如下圖,三棱柱的各棱長都是2,,分別是,的中點.

1)證明:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的中心在坐標原點,焦點在x軸上,左頂點為A,左焦點為,點在橢圓C上,直線與橢圓C交于E,F兩點,直線AE,AF分別與y軸交于點M,N

求橢圓C的方程;

x軸上是否存在點P,使得無論非零實數(shù)k怎樣變化,總有為直角?若存在,求出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的圓心在直線上,且圓相切于點.過點作兩條斜率之積為-2的直線分別交圓,,.

1)求圓的標準方程;

2)設線段,的中點分別為,,證明:直線恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設直線l:y=2x﹣1與雙曲線)相交于A、B兩個不

同的點,且(O為原點).

(1)判斷是否為定值,并說明理由;

(2)當雙曲線離心率時,求雙曲線實軸長的取值范圍.

查看答案和解析>>

同步練習冊答案