已知橢圓
x22
+y2=1
的左右焦點分別為F1,F(xiàn)2,若過點P(0,-2)及F1的直線交橢圓于A,B兩點,求△ABF2的面積.
分析:根據(jù)題意,算出直線AB方程為y=-2x-2,與橢圓方程消去x得9y2+4y-4=0.設A(x1,y1)、B(x2,y2),利用根與系數(shù)的關系結合配方的方法算出|y1-y2|=
4
10
9
,最后根據(jù)三角形面積公式即可算出△ABF2的面積.
解答:解:由題意,得
∵橢圓
x2
2
+y2=1
的左焦點為F1(-1,0),點P(0,-2)
∴直線PF1的斜率為k=-2,得直線AB方程為y=-2(x+1),化簡得y=-2x-2
y=-2x-2
x2
2
+
y2
1
=1
消去x,可得9y2+4y-4=0,
設A(x1,y1)、B(x2,y2),
∴y1+y2=-
4
9
,y1y2=-
4
9

因此,可得|y1-y2|=
(y1+y2)2-4y1y2
=
4
10
9

∵橢圓的焦距為|F1F2|=2
∴△ABF2的面積為S =
1
2
|F1F2|•|y1-y2|=
4
10
9
點評:本題給出直線PF1與橢圓相交于A、B兩點,求△ABF2的面積.著重考查了橢圓的簡單幾何性質和直線與橢圓位置關系等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓
x22
+y2=1
的右準線l與x軸相交于點E,過橢圓右焦點F的直線與橢圓相交于A、B兩點,點C在右準線l上,且BC∥x軸?求證直線AC經(jīng)過線段EF的中點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知橢圓
x22
+y2=1
的左焦點為F,O為坐標原點.
(I)求過點O、F,并且與橢圓的左準線l相切的圓的方程;
(II)設過點F的直線交橢圓于A、B兩點,并且線段AB的中點在直線x+y=0上,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
2
+y2=1
的左焦點為F,O為坐標原點.過點F的直線l交橢圓于A、B兩點.
(1)若直線l的傾斜角α=
π
4
,求|AB|;
(2)求弦AB的中點M的軌跡方程;
(3)設過點F且不與坐標軸垂直的直線交橢圓于A、B兩點,
線段AB的垂直平分線與x軸交于點G,求點G橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x22
+y2=1的左、右焦點為F1、F2,上頂點為A,直線AF1交橢圓于B.如圖所示沿x軸折起,使得平面AF1F2⊥平面BF1F2.點O為坐標原點.
( I ) 求三棱錐A-F1F2B的體積;
(Ⅱ)圖2中線段BF2上是否存在點M,使得AM⊥OB,若存在,請在圖1中指出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•鐘祥市模擬)如圖,已知橢圓
x2
2
+y2=1
內有一點M,過M作兩條動直線AC、BD分別交橢圓于A、C和B、D兩點,若|
AB
|2+|
CD
|2=|
BC
|2+|
AD
|2


(1)證明:AC⊥BD;
(2)若M點恰好為橢圓中心O
(i)四邊形ABCD是否存在內切圓?若存在,求其內切圓方程;若不存在,請說明理由.
(ii)求弦AB長的最小值.

查看答案和解析>>

同步練習冊答案