f(x)=e|x|,數(shù)學(xué)公式=________.

2e-2
分析:把積分區(qū)間[-1,1]分為[-1,0]、[0,1]兩個(gè)區(qū)間,即可去掉絕對值符號,從而計(jì)算其值.
解答:f(x)dx=+=+=e-1+e-1=2e-2.
故答案為2e-2.
點(diǎn)評:本題考查定積分的計(jì)算,通過分類討論去掉絕對值分區(qū)間計(jì)算即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義在區(qū)間D上的函數(shù)f(x)和g(x),如果對于任意x∈D,都有|f(x)-g(x)|≤1成立,那么稱函數(shù)f(x)在區(qū)間D上可被函數(shù)g(x)替代.
(1)若f(x)=
x
2
-
1
x
,g(x)=lnx
,試判斷在區(qū)間[[1,e]]上f(x)能否被g(x)替代?
(2)記f(x)=x,g(x)=lnx,證明f(x)在(
1
m
,m)(m>1)
上不能被g(x)替代;
(3)設(shè)f(x)=alnx-ax,g(x)=-
1
2
x2+x
,若f(x)在區(qū)間[1,e]上能被g(x)替代,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義一:對于一個(gè)函數(shù)f(x)(x∈D),若存在兩條距離為d的直線y=kx+m1和y=kx+m2,使得在x∈D時(shí),kx+m1≤f(x)≤kx+m2 恒成立,則稱函數(shù)f(x)在D內(nèi)有一個(gè)寬度為d的通道.
定義二:若一個(gè)函數(shù)f(x),對于任意給定的正數(shù)?,都存在一個(gè)實(shí)數(shù)x0,使得函數(shù)f(x)在[x0,+∞)內(nèi)有一個(gè)寬度為?的通道,則稱f(x)在正無窮處有永恒通道.下列函數(shù):
①f(x)=lnx,②f(x)=
sinx
x
,③f(x)=
x2-1 
,④f(x)=x2,⑤f(x)=e-x,
其中在正無窮處有永恒通道的函數(shù)的序號是
②③⑤
②③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們把形如y=f(x)φ(x)的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對數(shù)法:在函數(shù)解析式兩邊求對數(shù)得lny=φ(x)lnf(x),兩邊求導(dǎo)數(shù),得
y′
y
=φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
,于是y′=f(x)φ(x)[φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
]
,運(yùn)用此方法可以探求得函數(shù)y=x
1
x
的一個(gè)單調(diào)遞增區(qū)間是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案