【題目】2022年北京冬奧會(huì)的申辦成功與“3億人上冰雪”口號(hào)的提出,將冰雪這個(gè)冷項(xiàng)目迅速炒“熱”.北京某綜合大學(xué)計(jì)劃在一年級(jí)開設(shè)冰球課程,為了解學(xué)生對(duì)冰球運(yùn)動(dòng)的興趣,隨機(jī)從該校一年級(jí)學(xué)生中抽取了100人進(jìn)行調(diào)查,其中女生中對(duì)冰球運(yùn)動(dòng)有興趣的占,而男生有10人表示對(duì)冰球運(yùn)動(dòng)沒有興趣額.

(1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對(duì)冰球是否有興趣與性別有關(guān)”?

(2)若將頻率視為概率,現(xiàn)再?gòu)脑撔R荒昙?jí)全體學(xué)生中,采用隨機(jī)抽樣的方法每次抽取1名學(xué)生,抽取5次,記被抽取的5名學(xué)生中對(duì)冰球有興趣的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列,期望和方差.

附表:

【答案】(1)(2)見解析

【解析】

(1)根據(jù)題意確定數(shù)據(jù),再根據(jù)卡方公式求,最后根據(jù)參考數(shù)據(jù)作判斷,(2)根據(jù)題意確定隨機(jī)變量服從二項(xiàng)分布,根據(jù)二項(xiàng)分布分布列、數(shù)學(xué)期望公式以及方差公式求結(jié)果.

解:(1)根據(jù)已知數(shù)據(jù)得到如下列聯(lián)表

有興趣

沒有興趣

合計(jì)

45

10

55

30

15

45

合計(jì)

75

25

100

根據(jù)列聯(lián)表中的數(shù)據(jù),得到

所以有90%的把握認(rèn)為“對(duì)冰球是否有興趣與性別有關(guān)”。

(2)由列聯(lián)表中數(shù)據(jù)可知,對(duì)冰球有興趣的學(xué)生頻率是,將頻率視為概率,即從大一學(xué)生中抽取一名學(xué)生對(duì)冰球有興趣的概率是

由題意知,從而X的分布列為

X

0

1

2

3

4

5

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l和平面,若直線l在空間中任意放置,則在平面內(nèi)總有直線

A.垂直B.平行C.異面D.相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的左、右焦點(diǎn)分別為,橢圓上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形的周長(zhǎng)為6,離心率為,

(Ⅰ)求橢圓的方程;

(Ⅱ)過點(diǎn)的直線交橢圓兩點(diǎn),問在軸上是否存在定點(diǎn),使得為定值?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】3333的方格表中毎個(gè)格染三種顏色之一,使得每種顏色的格的個(gè)數(shù)相等.若相鄰兩格的顏色不同,則稱其公共邊為分隔邊".試求分隔邊條數(shù)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推導(dǎo)球的體積公式,劉徽制造了一個(gè)牟合方蓋(在一個(gè)正方體內(nèi)作兩個(gè)互相垂直的內(nèi)切圓柱,這兩個(gè)圓柱的公共部分叫做牟合方蓋),但沒有得到牟合方蓋的體積.200年后,祖暅給出牟合方蓋的體積計(jì)算方法,其核心過程被后人稱為祖暅原理:緣冪勢(shì)既同,則積不容異.意思是,夾在兩個(gè)平行平面間的兩個(gè)幾何體被平行于這兩個(gè)平行平面的任意平面所截,如果截面的面積總相等,那么這兩個(gè)幾何體的體積也相等.現(xiàn)在截取牟合方蓋的八分之一,它的外切正方體的棱長(zhǎng)為1,如圖所示,根據(jù)以上信息,則該牟合方蓋的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定:在桌面上,用母球擊打目標(biāo)球,使目標(biāo)球運(yùn)動(dòng),球的位置是指球心的位置我們說球 A 是指該球的球心點(diǎn) A.兩球碰撞后,目標(biāo)球在兩球的球心所確定的直線上運(yùn)動(dòng),目標(biāo)球的運(yùn)動(dòng)方向是指目標(biāo)球被母球擊打時(shí),母球球心所指向目標(biāo)球球心的方向.所有的球都簡(jiǎn)化為平面上半徑為 1 的圓,且母球與目標(biāo)球有公共點(diǎn)時(shí),目標(biāo)球就開始運(yùn)動(dòng),在桌面上建立平面直角坐標(biāo)系,解決下列問題:

(1) 如圖,設(shè)母球 A 的位置為 (0, 0),目標(biāo)球 B 的位置為 (4, 0),要使目標(biāo)球 B C(8, -4) 處運(yùn)動(dòng),求母球 A 球心運(yùn)動(dòng)的直線方程;

(2)如圖,若母球 A 的位置為 (0, -2),目標(biāo)球 B 的位置為 (4, 0),能否讓母球 A 擊打目標(biāo) B 球后,使目標(biāo) B 球向 (8,-4) 處運(yùn)動(dòng)?

(3) A 的位置為 (0,a) 時(shí),使得母球 A 擊打目標(biāo)球 B 時(shí),目標(biāo)球 B(4, 0) 運(yùn)動(dòng)方向可以碰到目標(biāo)球 C(7,-5),求 a 的最小值(只需要寫出結(jié)果即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l、m,平面α、β,下列命題正確的是 (  )

A. lβ,lααβ

B. lβmβ,lα,mααβ

C. lm,lα,mβαβ

D. lβ,mβ,lα,mα,lmMαβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

)當(dāng)時(shí),證明有極小值點(diǎn),且

)證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,橢圓的方程為,以為極點(diǎn), 軸非負(fù)半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求直線的直角坐標(biāo)方程和橢圓的參數(shù)方程;

(2)設(shè)為橢圓上任意一點(diǎn),求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案