【題目】已知函數(shù),,且處取得極大值1.

1)求a,b的值;

2)當時,恒成立,求m的取值范圍.

【答案】12

【解析】

1)求出導函數(shù),由處取得極大值1,可解得a,b的值;

2)由,整理可得恒成立.,則只需的最小值大于零,分類討論即可求出m的取值范圍.

解:(1

,

處取得極大值1

,即,解得.

2)由(1)知,.

時,恒成立,

恒成立,

等價于當時,恒成立.

,

時,,

上單調(diào)遞增,

,滿足題意;

時,令

,

上單調(diào)遞增.

上單調(diào)遞增,

.

(。┊時,

,

上單調(diào)遞增,

,滿足題意;

(ⅱ)當時,

,

有唯一零點,設為,

時,;

時,,

上單調(diào)遞減,在上單調(diào)遞增.

時,,

不滿足題意.

綜上,當時,恒成立,

m的取值范圍為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】一種新的驗血技術(shù)可以提高血液檢測效率.現(xiàn)某專業(yè)檢測機構(gòu)提取了份血液樣本,其中只有1份呈陽性,并設計了如下混合檢測方案:先隨機對其中份血液樣本分別取樣,然后再混合在一起進行檢測,若檢測結(jié)果為陰性,則對另外3份血液逐一檢測,直到確定呈陽性的血液為止;若檢測結(jié)果呈陽性,測對這份血液再逐一檢測,直到確定呈陽性的血液為止.

1)若,求恰好經(jīng)過3次檢測而確定呈陽性的血液的事件概率;

2)若,宜采用以上方案檢測而確定呈陽性的血液所需次數(shù)為

①求的概率分布;

②求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國北斗衛(wèi)星導航系統(tǒng)是中國自行研制的全球衛(wèi)星導航系統(tǒng),預計2020年北斗全球系統(tǒng)建設將全面完成.如圖是在室外開放的環(huán)境下,北斗二代和北斗三代定位模塊,分別定位的50個點位的橫、縱坐標誤差的值,其中“”表示北斗二代定位模塊的誤差的值,“+”表示北斗三代定位模塊的誤差的值.(單位:米)

(Ⅰ)從北斗二代定位的50個點位中隨機抽取一個,求此點橫坐標誤差的值大于10米的概率;

(Ⅱ)從圖中A,B,CD四個點位中隨機選出兩個,記X為其中縱坐標誤差的值小于的點位的個數(shù),求X的分布列和數(shù)學期望;

(Ⅲ)試比較北斗二代和北斗三代定位模塊縱坐標誤差的方差的大小.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,將長方形OAA1O1(及其內(nèi)部)繞OO1旋轉(zhuǎn)一周形成圓柱,其中,弧的長為,ABO的直徑.

1)在弧上是否存在點(,在平面的同側(cè)),使,若存在,確定其位置,若不存在,說明理由.

2)求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:若向量列,滿足條件:從第二項開始,每一項與它的前一項的差都等于同一個常向量(即坐標都是常數(shù)的向量),即,且,為常向量),則稱這個向量列為等差向量列,這個常向量叫做等差向量列的公差,且向量列的前項和為.已知等差向量列滿足,則向量列的前項和

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和,數(shù)列滿足.

1)證明:是等比數(shù)列,并求;

2)若數(shù)列中去掉與數(shù)列中相同的項后,余下的項按原順序排列成數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學成就的杰出代表作,其中《方田》章給出計算弧田面積所用的經(jīng)驗方式為:弧田面積=(弦×矢+矢2),弧田(如圖)由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,現(xiàn)有圓心角為,半徑等于米的弧田,按照上述經(jīng)驗公式計算所得弧田面積約是

A. 平方米 B. 平方米

C. 平方米 D. 平方米

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習慣,粽子又稱粽籺,俗稱粽子,古稱角黍,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某社區(qū)消費者協(xié)會為了解本社區(qū)居民網(wǎng)購消費情況,隨機抽取了100位居民作為樣本,就最近一年來網(wǎng)購消費金額(單位:千元),網(wǎng)購次數(shù)和支付方式等進行了問卷調(diào)查.經(jīng)統(tǒng)計這100位居民的網(wǎng)購消費金額均在區(qū)間內(nèi),按分成6組,其頻率分布直方圖如圖所示.

1)估計該社區(qū)居民最近一年來網(wǎng)購消費金額的中位數(shù);

2)將網(wǎng)購消費金額在20千元以上者稱為網(wǎng)購迷,補全下面的列聯(lián)表,并判斷有多大把握認為網(wǎng)購迷與性別有關(guān)系

總計

網(wǎng)購迷

20

非網(wǎng)購迷

45

總計

100

附:

臨界值表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案