【題目】已知數(shù)列{an},an=(2n+m)+(﹣1)n(3n﹣2)(m∈N* , m與n無關(guān)),若 a2i﹣1≤k2﹣2k﹣1對(duì)一切m∈N*恒成立,則實(shí)數(shù)k的取值范圍為 .
【答案】(﹣∞,﹣1]∪[3,+∞)
【解析】解:a2i﹣1=2(2i﹣1)+m+(﹣1)2i﹣1[3(2i﹣1)﹣2]=4i﹣2+m﹣(6i﹣5)=﹣2i+m+3, a2i﹣1= (﹣2i+m+3)=﹣2 i+2m(m+3)= +2m2+6m=﹣2m2+4m,
∴﹣2m2+4m≤k2﹣2k﹣1恒成立,
∵﹣2m2+4m=﹣2(m﹣1)2+2≤2,
∴k2﹣2k﹣1≥2恒成立,即k2﹣2k﹣3≥0,
解得k≥3或k≤﹣1.
所以答案是(﹣∞,﹣1]∪[3,+∞).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識(shí),掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,是假命題的是( )
A.?x0∈R,sinx0+cosx0=
B.?x0∈R,tanx0=2016
C.?x>0,x>lnx
D.?x∈R,2x>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動(dòng):對(duì)首次消費(fèi)的顧客,按200元/次收費(fèi),并注冊(cè)成為會(huì)員,對(duì)會(huì)員逐次消費(fèi)給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如表:
消費(fèi)次第 | 第1次 | 第2次 | 第3次 | 第4次 | ≥5次 |
收費(fèi)比例 | 1 | 0.95 | 0.90 | 0.85 | 0.80 |
該公司從注冊(cè)的會(huì)員中,隨機(jī)抽取了100位進(jìn)行統(tǒng)計(jì),得到統(tǒng)計(jì)數(shù)據(jù)如表:
消費(fèi)次第 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
頻數(shù) | 60 | 20 | 10 | 5 | 5 |
假設(shè)汽車美容一次,公司成本為150元,根據(jù)所給數(shù)據(jù),解答下列問題:
(1)估計(jì)該公司一位會(huì)員至少消費(fèi)兩次的概率;
(2)某會(huì)員僅消費(fèi)兩次,求這兩次消費(fèi)中,公司獲得的平均利潤(rùn);
(3)設(shè)該公司從至少消費(fèi)兩次,求這的顧客消費(fèi)次數(shù)用分層抽樣方法抽出8人,再?gòu)倪@8人中抽出2人發(fā)放紀(jì)念品,求抽出2人中恰有1人消費(fèi)兩次的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知雙曲線C: =1(a>0,b>0)的右頂點(diǎn)為A,O為坐標(biāo)原點(diǎn),以A為圓心的圓與雙曲線C的某漸近線交于兩點(diǎn)P,Q,若∠PAQ= ,且 |,則雙曲線C的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校有高一、高二、高三三個(gè)年級(jí),已知高一、高二、高三的學(xué)生數(shù)之比為2:3;5,現(xiàn)從該學(xué)校中抽取一個(gè)容量為100的樣本,從高一學(xué)生中用簡(jiǎn)單隨機(jī)抽樣抽取樣本時(shí),學(xué)生甲被抽到的概率為 ,則該學(xué)校學(xué)生的總數(shù)為( )
A.200
B.400
C.500
D.1000
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx(x>0)的圖象與x軸相切于點(diǎn)(3,0). (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若g(x)+f(x)=﹣6x2+(3c+9)x,命題p:x1 , x2∈[﹣1,1],|g(x1)﹣g(x2)|>1為假命題,求實(shí)數(shù)c的取值范圍;
(Ⅲ)若h(x)+f(x)=x3﹣7x2+9x+clnx(c是與x無關(guān)的負(fù)數(shù)),判斷函數(shù)h(x)有幾個(gè)不同的零點(diǎn),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0)經(jīng)過點(diǎn)( ,1),以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓經(jīng)過橢圓的焦點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)過點(diǎn)(﹣1,0)的直線l與橢圓C相交于A、B兩點(diǎn),試問在x軸上是否存在一個(gè)定點(diǎn)M,使得 恒為定值?若存在,求出該定值及點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+1|+|x﹣3|,g(x)=a﹣|x﹣2|. (Ⅰ)若關(guān)于x的不等式f(x)<g(x)有解,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若關(guān)于x的不等式f(x)<g(x)的解集為 ,求a+b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}中,已知a3=5,且a1 , a2 , a5為遞增的等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}的通項(xiàng)公式 (k∈N*),求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com