【題目】十八屆五中全會公報指出:努力促進人口均衡發(fā)展,堅持計劃生育的基本國策,完善人口發(fā)展戰(zhàn)略,全面實施一對夫婦可生育兩個孩子的政策,提高生殖健康、婦幼保健、托幼等公共服務水平.為了解適齡公務員對放開生育二胎政策的態(tài)度,某部門隨機調查了100位30到40歲的公務員,得到情況如下表:

男公務員

女公務員

生二胎

40

20

不生二胎

20

20


(1)是否有95%以上的把握認為“生二胎與性別有關”,并說明理由;
(2)把以上頻率當概率,若從社會上隨機抽取3位30到40歲的男公務員,記其中生二胎的人數(shù)為X,求隨機變量X的分布列,數(shù)學期望.
附:K2=

P(K2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

【答案】
(1)解:由于K2= = = <3.841,

故沒有95%以上的把握認為“生二胎與性別有關”.


(2)解:題意可得,男公務員生二胎的概率為 = ,X~B(3, ),

X的分布列為

X

0

1

2

3

P

E(X)=3 =2.


【解析】(1)計算K2<3.841,可得結論.(2)男公務員生二胎的概率為 = ,X~B(3, ),由此求得X的分布列與數(shù)學期望.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

某學校用簡單隨機抽樣方法抽取了100名同學,對其日均課外閱讀時間(單位:分鐘)進行調查,結果如下:

t

男同學人數(shù)

7

11

15

12

2

1

女同學人數(shù)

8

9

17

13

3

2

若將日均課外閱讀時間不低于60分鐘的學生稱為“讀書迷”.

(1)將頻率視為概率,估計該校4000名學生中“讀書迷”有多少人?

(2)從已抽取的8名“讀書迷”中隨機抽取4位同學參加讀書日宣傳活動.

(i)求抽取的4位同學中既有男同學又有女同學的概率;

(ii)記抽取的“讀書迷”中男生人數(shù)為,求的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國科研人員屠呦呦法相從青篙中提取物青篙素抗瘧性超強,幾乎達到100%,據(jù)監(jiān)測:服藥后每毫升血液中的含藥量y(微克)與時間r(小時)之間近似滿足如圖所示的曲線

(1)寫出第一服藥后y與t之間的函數(shù)關系式y(tǒng)=f(x);
(2)據(jù)進一步測定:每毫升血液中含藥量不少于 微克時,治療有效,求服藥一次后治療有效的時間是多長?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高二八班選出甲、乙、丙三名同學參加級部組織的科學知識競賽.在該次競賽中只設成績優(yōu)秀和成績良好兩個等次,若某同學成績優(yōu)秀,則給予班級10分的班級積分,若成績良好,則給予班級5分的班級積分.假設甲、乙、丙成績?yōu)閮?yōu)秀的概率分別為 , ,他們的競賽成績相互獨立.
(1)求在該次競賽中甲、乙、丙三名同學中至少有一名成績?yōu)閮?yōu)秀的概率;
(2)記在該次競賽中甲、乙、丙三名同學所得的班級積分之和為隨機變量ξ,求隨機變量ξ的分布列和數(shù)學期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R的函數(shù)f(x)= 是奇函數(shù),其中a,b為實數(shù)
(1)求a,b的值
(2)用定義證明f(x)在R上是減函數(shù)
(3)若對于任意的t∈[﹣3,3],不等式f(t2﹣2t)+f(﹣2t2+k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點在以為直徑的圓上, 垂直與圓所在平面, 的垂心.

(1)求證:平面平面;

(2)若,點在線段上,且,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的最大值為2.

(Ⅰ)求函數(shù)上的單調遞減區(qū)間;

(Ⅱ)中,角,所對的邊分別是,,,且,,若,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按0.5元/度收費,超過200度但不超過400度的部分按0.8元/度收費,超過400度的部分按1.0元/度收費.

(1)求某戶居民用電費用(單位:元)關于月用電量(單位:度)的函數(shù)解析式;

2)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費用不超過260元的點80%,求的值;

(3)在滿足(2)的條件下,估計1月份該市居民用戶平均用電費用(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形, , ,平面底面, 的中點, 是棱上的點, ,

(Ⅰ)求證:平面平面;

(Ⅱ)若二面角大小為,設,試確定的值.

查看答案和解析>>

同步練習冊答案