【題目】將2張邊長均為1分米的正方形紙片分別按甲、乙兩種方式剪裁并廢棄陰影部分.

(1)在圖甲的方式下,剩余部分恰能完全覆蓋某圓錐的表面,求該圓錐的母線長及底面半徑;
(2)在圖乙的方式下,剩余部分能完全覆蓋一個長方體的表面,求長方體體積的最大值.

【答案】
(1)解:甲圖對應(yīng)的圓錐如圖丙,圓錐母線為PA=L,圓錐底面圓半徑為OA=r

則有L+r+ = , 解得L= ,r=

∴該圓錐的母線長及底面半徑分別為 分米、 分米


(2)解:圖乙剩余部分覆蓋的長方體如圖丁所示,設(shè)其棱長為a,b,c

則2(a+b)=1,2b+c=1a= ,c=1﹣2b

長方體體積的V=abc=( )b(1﹣2b)= ,(0

令g(b)= ,(0 ),g′(b)=4b2﹣4b+ =(3b﹣ )(2b﹣1)

b 時,g′(b)>0,b 時,g′(b)<0

∴g(b)在(0, )遞增,在( )遞減,

∴當(dāng)b= 時,長方體體積最大值,Vmax=( )× ×(1﹣2× )=


【解析】(1)設(shè)圓錐母線長為L,底面半徑為r,則根據(jù)題意可知L+r+r=(正方形的對角線長),然后根據(jù)扇形弧長=底面圓的周長列出另一個關(guān)于L、r的方程,兩方程聯(lián)立即可求解;(2)設(shè)長方體棱長分別為a、b、c,然后根據(jù)題意將長方體體積V用b表示,構(gòu)造函數(shù)g(b),利用導(dǎo)數(shù)討論g(b)的單調(diào)性進(jìn)而求出V的最大值.
【考點(diǎn)精析】利用旋轉(zhuǎn)體(圓柱、圓錐、圓臺)對題目進(jìn)行判斷即可得到答案,需要熟知常見的旋轉(zhuǎn)體有:圓柱、圓錐、圓臺、球.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(log2x﹣2)(log4x﹣
(1)當(dāng)x∈[2,4]時.求該函數(shù)的值域;
(2)若f(x)≥mlog2x對于x∈[4,16]恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c且a+2c=2bcosA.
(1)求角B的大。
(2)若b=2 ,a+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(x+θ)﹣cos cos( )(其中A為常數(shù),θ∈(﹣π,0),若實(shí)數(shù)x1 , x2 , x3滿足;①x1<x2<x3 , ②x3﹣x1<2π,③f(x1)=f(x2)=f(x3),則θ的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】不等式x6﹣(x+2)3+x2≤x4﹣(x+2)2+x+2的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)n≥3,n∈N* , 在集合{1,2,…,n}的所有元素個數(shù)為2的子集中,把每個子集的較大元素相加,和記為a,較小元素之和記為b.
(1)當(dāng)n=3時,求a,b的值;
(2)求證:對任意的n≥3,n∈N* , 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中, , ,其中n∈N*
(1)求證:數(shù)列{bn}為等差數(shù)列;
(2)設(shè)cn=bnbn+1cosnπ,n∈N* , 數(shù)列{cn}的前n項(xiàng)和為Tn , 若當(dāng)n∈N*且n為偶數(shù)時, 恒成立,求實(shí)數(shù)t的取值范圍;
(3)設(shè)數(shù)列{an}的前n項(xiàng)的和為Sn , 試求數(shù)列{S2n﹣Sn}的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】8把椅子擺成一排,4人隨機(jī)就座,任何兩人不相鄰的坐法種數(shù)為(
A.144
B.120
C.72
D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求函數(shù)f(x)= (a>0且a≠1)的值域.

查看答案和解析>>

同步練習(xí)冊答案