【題目】某工廠生產(chǎn)某種產(chǎn)品,每日的成本C(單位:萬(wàn)元)與日產(chǎn)量x(單位:噸)滿足函數(shù)關(guān)系式C=4+x,每日的銷售額S(單位:萬(wàn)元)與日產(chǎn)量x滿足函數(shù)關(guān)系式

S=,已知每日的利潤(rùn)L=S﹣C,且當(dāng)x=4時(shí),L=7.

(1)求k;

(2)當(dāng)日產(chǎn)量為多少噸時(shí),每日的利潤(rùn)可以達(dá)到最大?并求此最大值.

【答案】(1);(2)日產(chǎn)量為噸時(shí),日利潤(rùn)達(dá)到最大萬(wàn)元.

【解析】

(1)利用每日的利潤(rùn)LSC,且當(dāng)x=4時(shí),L=7,可求k的值;

(2)利用分段函數(shù),分別求出相應(yīng)的最值,即可得出函數(shù)的最大值.

(1)利潤(rùn)

當(dāng)時(shí),,所以,

,解得:。

(2)當(dāng)時(shí),為單調(diào)遞減函數(shù),

所以,當(dāng)時(shí),最大利潤(rùn)

當(dāng)時(shí), ,

當(dāng)時(shí),最大利潤(rùn)

綜上可知,當(dāng)日產(chǎn)量為5噸時(shí),日利潤(rùn)達(dá)到最大9萬(wàn)元

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計(jì)圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計(jì)圖,下列對(duì)統(tǒng)計(jì)圖理解錯(cuò)誤的是( )

A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬(wàn)件

B. 2018年1~4月的業(yè)務(wù)量同比增長(zhǎng)率均超過50%,在3月底最高

C. 從兩圖來(lái)看,2018年1~4月中的同一個(gè)月的快遞業(yè)務(wù)量與收入的同比增長(zhǎng)率并不完全一致

D. 從1~4月來(lái)看,該省在2018年快遞業(yè)務(wù)收入同比增長(zhǎng)率逐月增長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=1-a0a≠1)是定義在(-∞,+∞)上的奇函數(shù).

1)求a的值;

2)證明:函數(shù)fx)在定義域(-∞,+∞)內(nèi)是增函數(shù);

3)當(dāng)x∈(0,1]時(shí),tfx≥2x-2恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線被圓截得的弦長(zhǎng)為.

(1)的值;

(2)求過點(diǎn)并與圓C相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱中,已知,

1)求證:;

2)設(shè)上一點(diǎn),試確定的位置,使平面,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用紅、黃、藍(lán)三種不同的顏色給大小相同的三個(gè)圓隨機(jī)涂色,每個(gè)圓只涂一種顏色.設(shè)事件三個(gè)圓的顏色全不相同,事件三個(gè)圓的顏色不全相同,事件其中兩個(gè)圓的顏色相同,事件三個(gè)圓的顏色全相同”.

1)寫出試驗(yàn)的樣本空間.

2)用集合的形式表示事件.

3)事件與事件有什么關(guān)系?事件的交事件與事件有什么關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為2菱形ABCD中,,且對(duì)角線ACBD交點(diǎn)為O沿BD折起,使點(diǎn)A到達(dá)點(diǎn)的位置.

1)若,求證:平面ABCD;

2)若,求三棱錐體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱, 的中點(diǎn).

1證明 平面;

2, ,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值來(lái)衡量.當(dāng)時(shí),產(chǎn)品為一等品;當(dāng)時(shí),產(chǎn)品為二等品;當(dāng)時(shí),產(chǎn)品為三等品.現(xiàn)從甲、乙兩條生產(chǎn)線,各隨機(jī)抽取了100件該產(chǎn)品作為樣本,測(cè)量每件產(chǎn)品的質(zhì)量指標(biāo)值,整理得到甲、乙兩條生產(chǎn)線產(chǎn)品的質(zhì)量指標(biāo)值的頻率分布直方圖如圖所示,視樣本的頻率為總體的概率.

1)若從甲、乙生產(chǎn)線生產(chǎn)的產(chǎn)品中各隨機(jī)抽取1件,求恰好抽到1件一等品的概率;

2)若一件三等品、二等品、一等品的利潤(rùn)分別為10元、20元、30元,從乙生產(chǎn)線生產(chǎn)的產(chǎn)品中隨機(jī)抽取2件,求這兩件產(chǎn)品的利潤(rùn)之和的分布列和數(shù)學(xué)期望;

3)若從甲生產(chǎn)線生產(chǎn)的產(chǎn)品中隨機(jī)抽取件,其中抽到二等品的件數(shù)為隨機(jī)變量,且的數(shù)學(xué)期望不小于1200,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案