【題目】如圖,在直三棱柱中,DAC邊的中點(diǎn),,.

1)求證:AB1/∥平面BDC1;

2)求異面直線AB1BC1所成角的余弦值.

【答案】1)見解析(2

【解析】

1)連接B1CBC1于點(diǎn)E連接DE,推導(dǎo)出DE/AB1 由此證明AB1/∥平面BDC1

(2) 由異面直線AB1BC1所成角即DEBC1所成角.由此能求出異面直線AB1BC1所成角的余弦值.

1.如圖,連接B1CBC1于點(diǎn)E,連接DE,由直三棱柱ABC-A1B1C1可知,點(diǎn)EB1C的中點(diǎn),又DAC的中點(diǎn),所以DE/AB1,且平面BDC1

平面BDC1,所以AB1/∥平面BDC1

2.由(1)可知異面直線AB1BC1所成角即DEBC1所成角.

因?yàn)?/span>,,所以,.

又因?yàn)?/span>,,所以,所以。

,,得

EC1D中,

故所求角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1左右焦點(diǎn)為F1,F2直線(1xy0與該橢圓有一個(gè)公共點(diǎn)在y軸上,另一個(gè)公共點(diǎn)的坐標(biāo)為(m1).

1)求橢圓C的方程;

2)設(shè)P為橢圓C上任一點(diǎn),過焦點(diǎn)F1F2的弦分別為PM,PN,設(shè)λ1λ2,求λ12的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)=2cosωx)(ω>0)滿足:f)=f),且在區(qū)間()內(nèi)有最大值但沒有最小值,給出下列四個(gè)命題:P1在[0,]上單調(diào)遞減;P2的最小正周期是4π;P3的圖象關(guān)于直線x對(duì)稱;P4的圖象關(guān)于點(diǎn)(,0)對(duì)稱.其中的真命題是( )

A.P1P2B.P2,P4C.P1,P3D.P3,P4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校組織高一、高二年級(jí)學(xué)生進(jìn)行了“紀(jì)念建國(guó)70周年”的知識(shí)競(jìng)賽.從這兩個(gè)年級(jí)各隨機(jī)抽取了40名學(xué)生,對(duì)其成績(jī)進(jìn)行分析,得到了高一年級(jí)成績(jī)的頻率分布直方圖和高二年級(jí)成績(jī)的頻數(shù)分布表.

(Ⅰ)若成績(jī)不低于80分為“達(dá)標(biāo)”,估計(jì)高一年級(jí)知識(shí)競(jìng)賽的達(dá)標(biāo)率;

(Ⅱ)在抽取的學(xué)生中,從成績(jī)?yōu)閇95,100]的學(xué)生中隨機(jī)選取2名學(xué)生,代表學(xué)校外出參加比賽,求這2名學(xué)生來自于同一年級(jí)的概率;

(Ⅲ)記高一、高二兩個(gè)年級(jí)知識(shí)競(jìng)賽的平均分分別為,試估計(jì)的大小關(guān)系.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線E的極坐標(biāo)方程為4(ρ2-4sin2θ=(16-ρ2cos2θ,以極軸為x軸的非負(fù)半軸,極點(diǎn)O為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系.

1)寫出曲線E的直角坐標(biāo)方程;

2)若點(diǎn)P為曲線E上動(dòng)點(diǎn),點(diǎn)M為線段OP的中點(diǎn),直線l的參數(shù)方程為t為參數(shù)),求點(diǎn)M到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為,(a為參數(shù))。以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為,將C2逆時(shí)針旋轉(zhuǎn)以后得到曲線C3.

1)寫出C1C3的極坐標(biāo)方程;

2)設(shè)C2C3分別交曲線C1A、BC、D四點(diǎn),求四邊形ACBD面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,分別為雙曲線的左、右焦點(diǎn),點(diǎn)P是以為直徑的圓與C在第一象限內(nèi)的交點(diǎn),若線段的中點(diǎn)QC的漸近線上,則C的兩條漸近線方程為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an+1an}是首項(xiàng)為,公比為的等比數(shù)列,a11

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

(Ⅱ)求數(shù)列{3n1an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列各項(xiàng)均為正數(shù),Sn是數(shù)列的前n項(xiàng)的和,對(duì)任意的,都有.數(shù)列各項(xiàng)都是正整數(shù),,且數(shù)列是等比數(shù)列.

(1) 證明:數(shù)列是等差數(shù)列;

(2) 求數(shù)列的通項(xiàng)公式

(3)求滿足的最小正整數(shù)n.

查看答案和解析>>

同步練習(xí)冊(cè)答案