【題目】已知橢圓 的焦點軸上,且橢圓經(jīng)過,過點的直線交于點,與拋物線 交于、兩點,當(dāng)直線的周長為

(Ⅰ)求的值和的方程;

(Ⅱ)以線段為直徑的圓是否經(jīng)過上一定點,若經(jīng)過一定點求出定點坐標(biāo),否則說明理由。

【答案】(1)(2)

【解析】試題分析:(1)由的周長為求得a,再根據(jù)橢圓經(jīng)過求得m,(2)設(shè)直線方程 ,與拋物線方程聯(lián)立方程組,消x得關(guān)于y的一元二次方程,結(jié)合韋達定理,化簡以線段為直徑的圓方程,按參數(shù)n整理,根據(jù)恒等式成立條件求出定點坐標(biāo)

試題解析:(1)由的周長為,即,因為橢圓經(jīng)過,所以

(2)設(shè)A,B坐標(biāo) ,則以線段為直徑的圓方程為,

再設(shè)直線方程 ,聯(lián)立直線與拋物線方程,得

代入得:

因此

,即以線段為直徑的圓經(jīng)過上一定點

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的公差d∈(0,1),且 =1,當(dāng)n=8時,{an}的前n項和Sn取得最小值,則a1的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(文科)已知函數(shù).

(1)若,求曲線在點處的切線方程;

(2)若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甘肅省瓜州縣自古就以盛產(chǎn)“美瓜”而名揚中外,生產(chǎn)的“瓜州蜜瓜”有4個系列30多個品種,質(zhì)脆汁多,香甜可口,清爽宜人,含糖量達14%-19%,是消暑止渴的佳品,有詩贊曰:冰泉浸綠玉,霸刀破黃金;涼冷消晚署,清甘洗渴心,調(diào)查表明,蜜瓜的甜度與海拔高度、日照時長、溫差有極強的相關(guān)性,分別用表示蜜瓜甜度與海拔高度、日照時長、溫差的相關(guān)程度,并對它們進行量化:0表示一般,1表示良,2表示優(yōu),再用綜合指標(biāo)的值評定蜜瓜的等級,若,則為一級;若,則為二級;若,則為三級.近年來,周邊各省也開始發(fā)展蜜瓜種植,為了了解目前蜜瓜在周邊各省的種植情況,研究人員從不同省份隨機抽取了10塊蜜瓜種植地,得到如下結(jié)果:

(1)若有蜜瓜種植地110塊,試估計等級為一級的蜜瓜種植地的數(shù)量;

(2)在所取樣本的二級和三級蜜瓜種植地中任取2塊, 表示取到三級蜜瓜種植地的數(shù)量,求隨機變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若其圖象向右平移 個單位后得到的函數(shù)為奇函數(shù),則函數(shù)y=f(x)的圖象(
A.關(guān)于點( ,0)對稱
B.關(guān)于直線x= 對稱
C.關(guān)于點( ,0)對稱
D.關(guān)于直線x= 對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某微信群中有甲、乙、丙、丁、戊五個人玩搶紅包游戲,現(xiàn)有4個紅包,每人最多搶一個,且紅包被全部搶完,4個紅包中有2個6元,1個8元,1個10元(紅包中金額相同視為相同紅包),則甲、乙都搶到紅包的情況有( )

A. 18種 B. 24種 C. 36種 D. 48種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某校隨機抽取100名學(xué)生,獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表和頻率分布直方圖:

(Ⅰ)從該校隨機選取一名學(xué)生,試估計這名學(xué)生該周課外閱讀時間少于12小時的概率;

(Ⅱ)求頻率分布直方圖中的的值;

(Ⅲ)從閱讀時間在的學(xué)生中任選2人,求恰好有1人閱讀時間在,另1 人閱讀時間在 的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在x= 取得最大值2,方程f(x)=0的兩個根為x1、x2 , 且|x1﹣x2|的最小值為π.
(1)求f(x);
(2)將函數(shù)y=f(x)圖象上各點的橫坐標(biāo)壓縮到原來的 ,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的單調(diào)增區(qū)間和在(﹣ )上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動點在圓 上運動,定點,線段的垂直平分線與直線的交點為

(Ⅰ)求的軌跡的方程;

(Ⅱ)過點的直線 分別交軌跡, 兩點和 兩點,且.證明:過中點的直線過定點.

查看答案和解析>>

同步練習(xí)冊答案