【題目】已知函數(shù),gx)=bx1),其中a≠0,b≠0

1)若ab,討論Fx)=fx)﹣gx)的單調(diào)區(qū)間;

2)已知函數(shù)fx)的曲線與函數(shù)gx)的曲線有兩個交點(diǎn),設(shè)兩個交點(diǎn)的橫坐標(biāo)分別為x1,x2,證明:

【答案】1)見解析(2)見解析

【解析】

1)求導(dǎo)得,按照a0、 a0討論的正負(fù)即可得解;

2)設(shè)x1x2,轉(zhuǎn)化條件得,令,,只需證明即可得證.

1)由已知得,

,

當(dāng)0x1時,∵1x20,﹣lnx0,∴1x2lnx0,;

當(dāng)x1時,∵1x20,﹣lnx0,∴1x2lnx0

故若a0,Fx)在(01)上單調(diào)遞增,在(1+∞)上單調(diào)遞減;

故若a0,Fx)在(01)上單調(diào)遞減,在(1+∞)上單調(diào)遞增.

2)不妨設(shè)x1x2,依題意,

,同理得

由①﹣②得,∴,

,

,

故只需證,

取∴,即只需證明,成立,

即只需證,成立,

,

pt)在區(qū)間[1+∞)上單調(diào)遞增,

pt)>p1)=0t1成立,

故原命題得證.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(I)討論的單調(diào)性;

II)若有兩個極值點(diǎn),記過點(diǎn)的直線的斜率為,問:是否存在,使得?若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

某投資公司在2010年年初準(zhǔn)備將1000萬元投資到低碳項(xiàng)目上,現(xiàn)有兩個項(xiàng)目供選擇:

項(xiàng)目一:新能源汽車.據(jù)市場調(diào)研,投資到該項(xiàng)目上,到年底可能獲利,也可能虧損,且這兩種情況發(fā)生的概率分別為;

項(xiàng)目二:通信設(shè)備.據(jù)市場調(diào)研,投資到該項(xiàng)目上,到年底可能獲利,可能虧損,也可能不賠不賺,且這三種情況發(fā)生的概率分別為、

)針對以上兩個投資項(xiàng)目,請你為投資公司選擇一個合理的項(xiàng)目,并說明理由;

)若市場預(yù)期不變,該投資公司按照你選擇的項(xiàng)目長期投資(每一年的利潤和本金繼續(xù)用作投資),問大約在哪一年的年底總資產(chǎn)(利潤+本金)可以翻一番?

(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為,(t為參數(shù))以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2sinθ,

1)求直線l的普通方程及曲線C的直角坐標(biāo)方程;

2)直線lx軸交于點(diǎn)P,與曲線C交于A,B兩點(diǎn),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,如圖,已知橢圓E的左、右頂點(diǎn)分別為、,上、下頂點(diǎn)分別為、.設(shè)直線傾斜角的余弦值為,圓與以線段為直徑的圓關(guān)于直線對稱.

1)求橢圓E的離心率;

2)判斷直線與圓的位置關(guān)系,并說明理由;

3)若圓的面積為,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】祖暅原理冪勢既同,則積不容異中的指面積,即是高,意思是:若兩個等高的幾何體在所有等高處的水平截面的面積恒等,則這兩幾何體的體積相等.設(shè)夾在兩個平行平面之間的幾何體的體積分別為,它們被平行于這兩個平面的任意平面截得的兩個截面面積分別為,則恒成立的(

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)設(shè)θ[0,π],且fθ1,求θ的值;

2)在ABC中,AB1fC1,且ABC的面積為,求sinA+sinB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在離心率為的橢圓上,則該橢圓的內(nèi)接八邊形面積的最大值為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的多面體中,平面,,且,點(diǎn)的中點(diǎn).

1)求證:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案