已知是一個等差 數(shù)列,且。
(1)求的通項; (2)求的前項和的最大值。

(1);(2)時,取最大值4.

解析試題分析:(1)設等差數(shù)列的公差為,則

解得:

(2)
時,取最大值4.
考點:等差數(shù)列的通項公式、求和公式。
點評:中檔題,本題較為典型,突出對等差數(shù)列基礎知識的考查。涉及等差數(shù)列、等比數(shù)列的通項公式的確定,往往建立相關變量 的方程組,使問題得解。確定等差數(shù)列和的最值,一般有兩種方法,一是利用二次函數(shù)知識,二是利用確定正負項的方法。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

為實數(shù),首項為,公差為的等差數(shù)列的前項和為,滿足.
(1)求通項;
(2)設是首項為,公比為的等比數(shù)列,求數(shù)列的通項公式及其前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

,Q=;若將,lgQ,lgP適當排序后可構成公差為1的等差數(shù)列的前三項.
(1)試比較M、P、Q的大;
(2)求的值及的通項;
(3)記函數(shù)的圖象在軸上截得的線段長為,
,求,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列為等差數(shù)列,且a3=5,a5=9;數(shù)列的前n項和為Sn,且Sn+bn=2.    
(1)求數(shù)列,的通項公式;
(2)若為數(shù)列的前n項和,求.  

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列滿足:
(1) 求數(shù)列的前20項的和; 
(2) 若數(shù)列滿足:,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,且方程有兩個不同的正根,其中一根是另一根的倍,記等差數(shù)列、的前項和分別為)。
(1)若,求的最大值;
(2)若,數(shù)列的公差為3,試問在數(shù)列中是否存在相等的項,若存在,求出由這些相等項從小到大排列得到的數(shù)列的通項公式;若不存在,請說明理由.
(3)若,數(shù)列的公差為3,且.
試證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列的公差大于0,且是方程的兩根,數(shù)列的前項和為.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

數(shù)列{an}的首項為3,{bn}為等差數(shù)列且bnan+1an(n∈N*).若b3=-2,b10=12,求a8的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設Sn是等差數(shù)列{an}的前n項和,已知的等比中項為,的等差中項為1,求等差數(shù)列{an}的通項。

查看答案和解析>>

同步練習冊答案