【題目】已知直線l1:(a-1)x+y+b=0,l2:ax+by-4=0,求滿足下列條件的a , b的值.
(1)l1⊥l2 , 且l1過點(diǎn)(1,1);
(2)l1∥l2 , 且l2在第一象限內(nèi)與兩坐標(biāo)軸圍成的三角形的面積為2.
【答案】
(1)解:∵l1⊥l2,∴a(a-1)+b=0.①
又l1過點(diǎn)(1,1),∴a+b=0.②
由①②,解得 或 .
當(dāng)a=0,b=0時(shí)不合題意,舍去.
∴a=2,b=-2
(2)解:∵l1∥l2,∴a-b(a-1)=0,③
由題意知a>0,b>0,直線l2與兩坐標(biāo)軸的交點(diǎn)坐標(biāo)分別為
則 ,
得ab=4,④
由③④,得a=2,b=2
【解析】(1)根據(jù)題意結(jié)合已知條件利用兩條直線垂直得到關(guān)于a、b的代數(shù)式,再由點(diǎn)在直線上代入點(diǎn)的坐標(biāo)又得到關(guān)于a、b的代數(shù)式聯(lián)立兩式即可求出a、b的值。(2)根據(jù)題意結(jié)合已知條件利用兩條直線平行即可得到關(guān)于a、b的代數(shù)式,再根據(jù)l2在第一象限內(nèi)與兩坐標(biāo)軸圍成的三角形的面積為2又得到關(guān)于a、b的代數(shù)式聯(lián)立兩式即可得出結(jié)果。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知公比為正數(shù)的等比數(shù)列{an}(n∈N*),首項(xiàng)a1=3,前n項(xiàng)和為Sn , 且S3+a3、S5+a5、S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)結(jié)論:
①方程k= 與方程y-2=k(x+1)可表示同一直線;
②直線l過點(diǎn)P(x1 , y1),傾斜角為 ,則其方程為x=x1;
③直線l過點(diǎn)P(x1 , y1),斜率為0,則其方程為y=y1;
④所有直線都有點(diǎn)斜式和斜截式方程.
其中正確的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)M(2,2),N(5,-2),點(diǎn)P在x軸上,分別求滿足下列條件的點(diǎn)P的坐標(biāo).
(1)∠MOP=∠OPN(O是坐標(biāo)原點(diǎn)).
(2)∠MPN是直角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們把離心率e= 的雙曲線 =1(a>0,b>0)稱為黃金雙曲線.如圖是雙曲線 =1(a>0,b>0,c= )的圖象,給出以下幾個(gè)說法: ①若b2=ac,則該雙曲線是黃金雙曲線;
②若F1 , F2為左右焦點(diǎn),A1 , A2為左右頂點(diǎn),B1(0,b),B2(0,﹣b)且∠F1B1A2=90°,則該雙曲線是黃金雙曲線;
③若MN經(jīng)過右焦點(diǎn)F2且MN⊥F1F2 , ∠MON=90°,則該雙曲線是黃金雙曲線.
其中正確命題的序號(hào)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= .
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若g(x)=xf(x)+mx在區(qū)間(0,e]上的最大值為﹣3,求m的值;
(3)若x≥1時(shí),有不等式f(x)≥ 恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過三點(diǎn)A(1,3),B(4,2),C(1,-7)的圓交y軸于M,N兩點(diǎn),則|MN|=( )
A.
B.8
C.
D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0(a>0);命題q:實(shí)數(shù)x滿足
(1)若a=1,且“p且q”為真,求實(shí)數(shù)x的取值范圍
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com