【題目】已知定義在R上的函數(shù)f(x)=Asin(ωx+φ)(x>0,A>0)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)寫出函數(shù)f(x)的單調遞增區(qū)間
(3)設不相等的實數(shù),x1 , x2∈(0,π),且f(x1)=f(x2)=﹣2,求x1+x2的值.
【答案】
(1)解:由函數(shù)f(x)的圖象可得A=4,
又∵函數(shù)的周期T=2( ﹣ )=π,
∴ω═ =2,
∵函數(shù)圖象經(jīng)過點P( ,4),即:4sin(2× +φ)=4,
∴利用五點作圖法可得:2× +φ= ,求得:φ= ,
∴函數(shù)的表達式為:
(2)解:由2kπ﹣ ≤2x+ ≤2kπ+ ,k∈Z,可得:kπ﹣ ≤x≤kπ+ ,k∈Z,
可得函數(shù)f(x)的單調遞增區(qū)間為:
(3)解:∵x∈(0,π),
∴2x+ ∈( , ),
又∵f(x)=﹣2,可得:sin(2x+ )=﹣ ,
∴2x+ = 或 ,解得:x= 或 ,
∴x1+x2=
【解析】(1)根據(jù)函數(shù)的最值得到A,再由函數(shù)的周期為2( ﹣ )=π,結合周期公式得到ω的值,再根據(jù)函數(shù)的最大值對應的x值,代入并解之得φ,從而得到函數(shù)的表達式.(2)由2kπ﹣ ≤2x+ ≤2kπ+ ,k∈Z,可解得f(x)的單調遞增區(qū)間.(3)由題意可得2x+ ∈( , ),又f(x)=﹣2,可得:sin(2x+ )=﹣ ,進而解得符合條件的不相等的2個實數(shù)解,即可得解.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(1)求到平面的距離
(2)在線段上是否存在一點,使?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐P﹣ABCD及其三視圖如下圖所示,E是側棱PC上的動點.
(Ⅰ)求四棱錐P﹣ABCD的體積;
(Ⅱ)不論點E在何位置,是否都有BD⊥AE?試證明你的結論;
(Ⅲ)若點E為PC的中點,求二面角D﹣AE﹣B的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某早餐店每天制作甲、乙兩種口味的糕點共n(nN*)份,每份糕點的成本1元,售價2元,如果當天賣不完,剩下的糕點作廢品處理.該早餐店發(fā)現(xiàn)這兩種糕點每天都有剩余,為此整理了過往100天這兩種糕點的日銷量(單位:份),得到如下的統(tǒng)計數(shù)據(jù):
甲口味糕點日銷量 | 48 | 49 | 50 | 51 |
天數(shù) | 20 | 40 | 20 | 20 |
乙口味糕點日銷量 | 48 | 49 | 50 | 51 |
天數(shù) | 40 | 30 | 20 | 10 |
以這100天記錄的各銷量的頻率作為各銷量的概率,假設這兩種糕點的日銷量相互獨立.
(1)記該店這兩種糕點每日的總銷量為X份,求X的分布列
(2)早餐店為了減少浪費,提升利潤,決定調整每天制作糕點的份數(shù)
①若產(chǎn)生浪費的概率不超過0.6,求n的最大值;
②以銷售這兩種糕點的日總利潤的期望值為決策依據(jù),在每天所制糕點能全部賣完與n=98之中選其一,應選哪個?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓F1:(x+1)2+y2=16,定點F2(1,0),A是圓F1上的一動點,線段F2A的垂直平分線交半徑F1A于P點.
(1)求P點的軌跡C的方程;
(2)四邊形EFGH的四個頂點都在曲線C上,且對角線EG,FH過原點O,
若kEGkFH=-,求證:四邊形EFGH的面積為定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的兩個焦點與短軸的一個端點是直角三角形的三個頂點,直線: 與橢圓有且只有一個公共點.
(Ⅰ)求橢圓的方程及點的坐標;
(Ⅱ)設是坐標原點,直線平行于,與橢圓交于不同的兩點、,且與直線交于點,證明:存在常數(shù),使得,并求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國家“十三五”計劃,提出創(chuàng)新興國,實現(xiàn)中國創(chuàng)新,某市教育局為了提高學生的創(chuàng)新能力,把行動落到實處,舉辦一次物理、化學綜合創(chuàng)新技能大賽,某校對其甲、乙、丙、丁四位學生的物理成績(x)和化學成績(y)進行回歸分析,求得回歸直線方程為y=1.5x﹣35.由于某種原因,成績表(如表所示)中缺失了乙的物理和化學成績.
甲 | 乙 | 丙 | 丁 | |
物理成績(x) | 75 | m | 80 | 85 |
化學成績(y) | 80 | n | 85 | 95 |
綜合素質 | 155 | 160 | 165 | 180 |
(1)請設法還原乙的物理成績m和化學成績n;
(2)在全市物理化學科技創(chuàng)新比賽中,由甲、乙、丙、丁四位學生組成學校代表隊參賽.共舉行3場比賽,每場比賽均由賽事主辦方從學校代表中隨機抽兩人參賽,每場比賽所抽的選手中,只要有一名選手的綜合素質分高于160分,就能為所在學校贏得一枚榮譽獎章.若記比賽中贏得榮譽獎章的枚數(shù)為ξ,試根據(jù)上表所提供數(shù)據(jù),預測該校所獲獎章數(shù)ξ的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2cosxsin(x+ )﹣a,且x=﹣ 是方程f(x)=0的一個解.
(1)求實數(shù)a的值及函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調遞減區(qū)間;
(3)若關于x的方程f(x)=b在區(qū)間(0, )上恰有三個不相等的實數(shù)根x1 , x2 , x3 , 直接寫出實數(shù)b的取值范圍及x1+x2+x3的取值范圍(不需要給出解題過程)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com