直線y=kx+1,當k變化時,此直線被橢圓
截得的最大弦長等于( )
直線y=kx+1恒過點(0,1),該點恰巧是橢圓
的上頂點,橢圓的長軸長為4,短軸長為2,而直線不經(jīng)過橢圓的長軸和短軸,因此排除A、C;將直線y=kx+1繞點(0,1)旋轉(zhuǎn),與橢圓有無數(shù)條弦,其中必有最大弦長,因此排除D.選B.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,橢圓
的離心率為
,
軸被曲線
截得的線段長等于
的長半軸長。
(1)求
,
的方程;
(2)設
與
軸的交點為M,過坐標原點O的直線
與
相交于點A,B,直線MA,MB分別與
相交與D,E.
①證明:
;
②記△MAB,△MDE的面積分別是
.問:是否存在直線
,使得
=
?請說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的兩個焦點分別為
和
,離心率
.
(1)求橢圓
的方程;
(2)若直線
(
)與橢圓
交于不同的兩點
、
,且線段
的垂直平分線過定點
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓C過點
,兩焦點為
、
,
是坐標原點,不經(jīng)過原點的直線
與該橢圓交于兩個不同點
、
,且直線
、
、
的斜率依次成等比數(shù)列.
(1)求橢圓C的方程;
(2)求直線
的斜率
;
(3)求
面積的范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖F
1.F
2是橢圓
:
與雙曲線
的公共焦點A、B分別是C
1、C
2在第二、四象限的公共點,若四邊形AF
1BF
2為矩形,則C
2的離心率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設
分別是橢圓:
的左、右焦點,過
傾斜角為
的直線
與該橢圓相交于P,
兩點,且
.則該橢圓的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若一個橢圓長軸的長度、短軸的長度和焦距成等差數(shù)列,則該橢圓的離心率是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
過橢圓
的焦點垂直于
軸的弦長為
,則雙曲線
的離心率
的值是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設
是橢圓
上兩點,點
關(guān)于
軸的對稱點為
(異于點
),若直線
分別交
軸于點
,則
( )
A.0 | B.1 | C. | D.2 |
查看答案和解析>>