【題目】如圖,已知橢圓C的中心為原點O,F(xiàn)(﹣2 ,0)為C的左焦點,P為C上一點,滿足|OP|=|OF|且|PF|=4,則橢圓C的方程為(

A. =1
B. =1
C. =1
D. =1

【答案】B
【解析】解:設橢圓標準方程為 ,焦距為2c,右焦點為F′,連接PF′,如右圖所示.
因為F(﹣2 ,0)為C的左焦點,所以c=2
由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,
所以∠PFF′+∠OF′P=∠FPO+∠OPF′,
由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF⊥PF′.
在Rt△PFF′中,由勾股定理,得|PF′|= ,
由橢圓定義,得|PF|+|PF′|=2a=4+8=12,從而a=6,得a2=36,
于是 ,
所以橢圓的方程為 =1.
故選B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,點P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,則PB與AC所成的角是(

A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司研發(fā)出一款產(chǎn)品,批量生產(chǎn)前先在某城市銷售30天進行市場調(diào)查.調(diào)查結果發(fā)現(xiàn):日銷量與天數(shù)的對應關系服從圖①所示的函數(shù)關系:每件產(chǎn)品的銷售利潤與天數(shù)的對應關系服從圖②所示的函數(shù)關系.圖①由拋物線的一部分(為拋物線頂點)和線段組成.

(Ⅰ)設該產(chǎn)品的日銷售利潤 ,分別求出, 的解析式,

(Ⅱ)若在30天的銷售中,日銷售利潤至少有一天超過8500元,則可以投入批量生產(chǎn),該產(chǎn)品是否可以投入批量生產(chǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班學生進行了三次數(shù)學測試,第一次有8名學生得滿分,第二次有10名學生得滿分,第三次有12名學生得滿分,已知前兩次均為滿分的學生有5名,三次測試中至少又一次得滿分的學生有15名.若后兩次均為滿分的學生至多有名,則的值為( )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若對任意 ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知O為坐標原點,F(xiàn)是橢圓C: =1(a>b>0)的左焦點,A,B分別為C的左,右頂點.P為C上一點,且PF⊥x軸,過點A的直線l與線段PF交于點M,與y軸交于點E.若直線BM經(jīng)過OE的中點,則C的離心率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4.
(Ⅰ)從袋中隨機抽取兩個球,求取出的球的編號之和不大于4的概率;
(Ⅱ)先從袋中隨機取一個球,該球的編號為m,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為n,求n<m+2的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是奇函數(shù)。

(1)求實數(shù)m的值;

(2)判斷函數(shù)f(x)(1,+∞)上的單調(diào)性,并給出證明;

(3)x(n,a-2),函數(shù)f(x)的值域是(1,+∞),求實數(shù)an的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)f(x)= ,存在一個正數(shù)b,使得f(x)的定義域和值域相同,則非零實數(shù)a的值為(
A.2
B.﹣2
C.﹣4
D.4

查看答案和解析>>

同步練習冊答案