精英家教網 > 高中數學 > 題目詳情

甲乙丙丁4人玩?zhèn)髑蛴螒,持球者將球等可能的傳給其他3人,若球首先從甲傳出,經過3次傳球.
(1)求球恰好回到甲手中的概率;
(2)設乙獲球(獲得其他游戲者傳的球)的次數為,求的分布列及數學期望.

(1);(2)分布列詳見解析,.

解析試題分析:本題主要考查古典概型和離散型隨機變量的分布列和數學期望等數學知識,考查學生的分析問題解決問題的能力和計算能力.第一問,利用古典概型先求出經過3次傳球的傳球方法共27種,再求3次傳球后,求恰好回到甲手中的種數,相除得到概率值;第二問,先分別求出的3種情況的概率,概率的分子可以用樹狀圖數出來,列出分布列,利用求出數學期望.
試題解析:⑴次傳球,傳球的方法共有種,次傳球結束時,球恰好回到甲手中的傳球方法為種,故所求概率為                              5分
⑵易知的所有可能取值為                                     6分
,            9分
的分布列為


0
1
2




10分
因此,.                       12分
考點:1.古典概型;2.離散型隨機變量的分布列和數學期望.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知一個矩形由三個相同的小矩形拼湊而成(如圖所示),用三種不同顏色給3個小矩形涂色,每個小矩形只涂一種顏色,求:

(1)3個矩形都涂同一顏色的概率;
(2)3個小矩形顏色都不同的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知直線l1:x-2y-1=0,直線l2:ax-by+1=0,其中a,b∈{1,2,3,4,5,6}.
(1) 求直線l1與l2相交的概率;
(2) 求直線l1與l2的交點位于第一象限的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

判斷下列命題正確與否.
(1)先后擲兩枚質地均勻的硬幣,等可能出現(xiàn)“兩個正面”“兩個反面”“一正一反”三種結果;
(2)某袋中裝有大小均勻的三個紅球、兩個黑球、一個白球,任取一球,那么每種顏色的球被摸到的可能性相同;
(3)從-4,-3,-2,-1,0,1,2中任取一數,取到的數小于0與不小于0的可能性相同;
(4)分別從3名男同學、4名女同學中各選一名代表,男、女同學當選的可能性相同.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為迎接2013年“兩會”(全國人大3月5日-3月18日、全國政協(xié)3月3日-3月14日)的勝利召開,某機構舉辦猜獎活動,參與者需先后回答兩道選擇題,問題A有四個選項,問題B有五個選項,但都只有一個選項是正確的,正確回答問題A可獲獎金元,正確回答問題B可獲獎金元.活動規(guī)定:參與者可任意選擇回答問題的順序,如果第一個問題回答錯誤,則該參與者猜獎活動中止.假設一個參與者在回答問題前,對這兩個問題都很陌生,試確定哪種回答問題的順序能使該參與者獲獎金額的期望值較大.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數y=x-1,令x=―4,―3,―2,-1,0,1,2,3,4,可得函數圖象上的九個點,在這九個點中隨機取出兩個點P1(x1,y1),P2(x2,y2),
(1)求P1,P2兩點在雙曲線xy=6上的概率;
(2)求P1,P2兩點不在同一雙曲線xy=k(k≠0)上的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

中國共產黨第十八次全國代表大會期間,某報刊媒體要選擇兩名記者去進行專題采訪,現(xiàn)有記者編號分別為1,2,3,4,5的五名男記者和編號分別為6,7,8,9的四名女記者.要從這九名記者中一次隨機選出兩名,每名記者被選到的概率是相等的,用符號(x,y)表示事件“抽到的兩名記者的編號分別為xy,且xy”.
(1)共有多少個基本事件?并列舉出來;
(2)求所抽取的兩名記者的編號之和小于17但不小于11或都是男記者的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某商店儲存的50個燈泡中,甲廠生產的燈泡占60%,乙廠生產的燈泡占40%,甲廠生產的燈泡的一等品率是90%,乙廠生產的燈泡的一等品率是80%.
(1)若從這50個燈泡中隨機抽取出1個燈泡(每個燈泡被取出的機會均等),則它是甲廠生產的一等品的概率是多少?
(2)若從這50個燈泡中隨機抽取出2個燈泡(每個燈泡被取出的機會均等),這2個燈泡中是甲廠生產的一等品的個數記為ξ,求E(ξ)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在一次數學測驗后,班級學委對選答題的選題情況進行了統(tǒng)計,如下表:

 
幾何證明選講
坐標系與
參數方程
不等式選講
合計
男同學(人數)
12
4
6
22
女同學(人數)
0
8
12
20
合計
12
12
18
42
(1)在統(tǒng)計結果中,如果把幾何證明選講和坐標系與參數方程稱為幾何類,把不等式選講稱為代數類,我們可以得到如下2×2列聯(lián)表:
 
幾何類
代數類
總計
男同學(人數)
16
6
22
女同學(人數)
8
12
20
總計
24
18
42
據此統(tǒng)計你是否認為選做“幾何類”或“代數類”與性別有關?若有關,你有多大的把握?
(2)在原統(tǒng)計結果中,如果不考慮性別因素,按分層抽樣的方法從選做不同選做題的同學中隨機選出7名同學進行座談.已知這名班級學委和兩名數學科代表都在選做“不等式選講”的同學中.
①求在這名班級學委被選中的條件下,兩名數學科代表也被選中的概率;
②記抽到數學科代表的人數為X,求X的分布列及數學期望E(X).
下面臨界值表僅供參考:
P(K2k0)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k0
2.072
2.706
3.841
5.024
6.635
7.879
10.828
參考公式:K2 

查看答案和解析>>

同步練習冊答案