【題目】已知各項(xiàng)均為正數(shù)的兩個(gè)數(shù)列和{}滿足:an+1,n∈N*.

(1)設(shè)bn+1=1+n∈N*,求證:數(shù)列是等差數(shù)列;

(2)設(shè)bn+1·,n∈N*,且是等比數(shù)列,求a1b1的值.

【答案】(1)見解析;(2)a1b1.

【解析】試題分析:1an+1,等式右邊分子分母同時(shí)除以,再將bn+1=1+帶入可得,從而得證;

(2)由不等式性質(zhì)有: 進(jìn)而得,設(shè)等比數(shù)列{an}的公比為q,由反證法可得q=1,故ana1(n∈N*),所以1<a1,從而得{bn}是公比為的等比數(shù)列,亦可由反證法得a1.

試題解析:

(1)證明 由題設(shè)知an+1,所以,

從而=1(n∈N*),

所以數(shù)列是以1為公差的等差數(shù)列.

(2)解 因?yàn)?/span>an>0,bn>0,

所以ab<(anbn)2,

從而1<an+1.(*)

設(shè)等比數(shù)列{an}的公比為q,由an>0知q>0.下證q=1.

q>1,則a1a2,故當(dāng)n>logq時(shí),an+1a1qn,與(*)矛盾;

若0<q<1,則a1a2>1,故當(dāng)n>logq時(shí),an+1a1qn<1,與(*)矛盾.

綜上,q=1,故ana1(n∈N*),

所以1<a1.

bn+1··bn(n∈N*),所以{bn}是公比為的等比數(shù)列.

a1,則>1,于是b1b2b3.

又由a1bn (n∈N*),所以b1,b2,b3中至少有兩項(xiàng)相同,矛盾,

所以a1,從而bn.

所以a1b1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:過點(diǎn)和點(diǎn).

Ⅰ)求橢圓的方程;

Ⅱ)設(shè)直線與橢圓相交于不同的兩點(diǎn), ,是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的各項(xiàng)均為非負(fù)數(shù),其前項(xiàng)和為,且對(duì)任意的,都有.

(1)若, ,求的最大值;

(2)若對(duì)任意,都有,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,在天中,兩臺(tái)機(jī)床每天生產(chǎn)的次品數(shù)分別為:

甲:;乙:

1)分別求兩組數(shù)據(jù)的眾數(shù)、中位數(shù);

2)根據(jù)兩組數(shù)據(jù)平均數(shù)和標(biāo)準(zhǔn)差的計(jì)算結(jié)果比較兩臺(tái)機(jī)床性能.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列滿足an=2an-1+2n+1(n∈N*n≥2), .

(1)求的值;

(2)是否存在一個(gè)實(shí)數(shù)t,使得 (n∈N*),且數(shù)列{}為等差數(shù)列?若存在,求出實(shí)數(shù)t;若不存在,請(qǐng)說明理由;

(3)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)志愿者協(xié)會(huì)有名同學(xué),成員構(gòu)成如下表,其中表中部分?jǐn)?shù)據(jù)不清楚,只知道從這名同學(xué)中隨機(jī)抽取一位,抽到該名同學(xué)為數(shù)學(xué)專業(yè)的概率為.

性別 專業(yè)

中文

英語

數(shù)學(xué)

體育

現(xiàn)從這名同學(xué)中隨機(jī)抽取名同學(xué)參加社會(huì)公益活動(dòng)(每位同學(xué)被選到的可能性相同).

Ⅰ)求的值;

Ⅱ)求選出的名同學(xué)恰為專業(yè)互不相同的男生的概率;

Ⅲ)設(shè)為選出的名同學(xué)中女生或數(shù)學(xué)專業(yè)的學(xué)生的人數(shù),求隨機(jī)變量的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

Ⅱ)求函數(shù)的單調(diào)區(qū)間;

Ⅲ)已知函數(shù)處取得極小值,不等式的解集為,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ax2-a-lnx,其中a ∈R.

(I)討論f(x)的單調(diào)性;

(II)確定a的所有可能取值,使得在區(qū)間(1,+∞)內(nèi)恒成立(e=2.718…為自然對(duì)數(shù)的底數(shù))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠家具車間造型兩類桌子,每張桌子需木工和漆工梁道工序完成.已知木工做一張、型型桌子分別需要1小時(shí)和2小時(shí),漆工油漆一張、型型桌子分別需要3小時(shí)和1小時(shí);又知木工、漆工每天工作分別不得超過8小時(shí)和9小時(shí),而工廠造一張、型型桌子分別獲利潤2千元和3千元.

(1)列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出可行域;

(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案