若點(diǎn)P(cosα,sinα)在直線(xiàn)y=x上,則sin2α-cos2α=


  1. A.
    -1
  2. B.
    數(shù)學(xué)公式
  3. C.
    0
  4. D.
    1
D
分析:由P在直線(xiàn)y=x上,將P坐標(biāo)代入直線(xiàn)方程,再利用同角三角函數(shù)間的基本關(guān)系求出tanα的值,將所求式子分母“1”利用同角三角函數(shù)間的基本關(guān)系化為sin2α+cos2α,分子利用二倍角的正弦、余弦函數(shù)公式化簡(jiǎn),分子分母同時(shí)除以cos2α,利用同角三角函數(shù)間的基本關(guān)系弦化切,把tanα的值代入即可求出值.
解答:∵點(diǎn)P(cosα,sinα)在直線(xiàn)y=x上,
∴將P坐標(biāo)代入直線(xiàn)方程得:sinα=cosα,即tanα=1,
則sin2α-cos2α===1.
故選D
點(diǎn)評(píng):此題考查了二倍角的正弦、余弦函數(shù)公式,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握公式及基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,S(1,1)是拋物線(xiàn)為y2=2px(p>0)上的一點(diǎn),弦SC,SD分別交x小軸于A,B兩點(diǎn),且SA=SB.
(I)求證:直線(xiàn)CD的斜率為定值;
(Ⅱ)延長(zhǎng)DC交x軸于點(diǎn)E,若
EC
=
1
3
ED
,求cos∠CSD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•紹興一模)如圖,在直角三角形OAB中,P,Q是斜邊AB的兩個(gè)三等分點(diǎn),已知|
OP
|=sinα
,且|
OQ
|
=cosα(0<α<
π
2
)

(1)若2sinα+cosα=
11
5
,求tanα的值;
(2)試判斷|
AB
|
是否為定值,并說(shuō)明理由;
(3)求△OPQ的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年?yáng)|三省沈陽(yáng)、大連、長(zhǎng)春、哈爾濱高三第二次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,S(1,1)是拋物線(xiàn)為y2=2px(p>0)上的一點(diǎn),弦SC,SD分別交x小軸于A,B兩點(diǎn),且SA=SB.
(I)求證:直線(xiàn)CD的斜率為定值;
(Ⅱ)延長(zhǎng)DC交x軸于點(diǎn)E,若,求cos∠CSD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年?yáng)|三省沈陽(yáng)、大連、長(zhǎng)春、哈爾濱高三第二次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,S(1,1)是拋物線(xiàn)為y2=2px(p>0)上的一點(diǎn),弦SC,SD分別交x小軸于A,B兩點(diǎn),且SA=SB.
(I)求證:直線(xiàn)CD的斜率為定值;
(Ⅱ)延長(zhǎng)DC交x軸于點(diǎn)E,若,求cos∠CSD的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案