精英家教網 > 高中數學 > 題目詳情

【題目】已知p:方程x2+y24x+m20表示圓:q:方程1m0)表示焦點在y軸上的橢圓.

(1)若p為真命題,求實數m的取值范圍;

(2)若命題p、q有且僅有一個為真,求實數m的取值范圍.

【答案】(1)﹣2m2.(2)(﹣2,0][23).

【解析】

1)把方程x2+y24x+m20化為(x22+y24m2,得到4m20,即可求解;

2)由方程1m0)表示焦點在y軸上的橢圓,求得0m3,再分類討論,列出不等式組,即可求解.

(1)由題意,命題p:方程x2+y24x+m20,可化得(x22+y24m2,

4m20,解得﹣2m2,所以實數m的取值范圍

(2)命題q:方程1m0)表示焦點在y軸上的橢圓,則0m3,

p為真,q為假時,,解得﹣2m≤0

p為假,q為真時,,解得2≤m3

綜上,實數m的取值范圍為:(﹣2,0][23).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論的單調區(qū)間;

(2)當時,證明: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線 的兩條漸近線與拋物線的準線分別交于兩點.若雙曲線的離心率為,的面積為為坐標原點,則拋物線的焦點坐標為 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱臺中,底面是邊長為的等邊三角形,上、下底面的面積之比為,側面底面,并且.

(1)平面平面,證明:

(2)求平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學2018年的高考考生人數是2015年高考考生人數的倍,為了更好地對比該?忌纳龑W情況,統(tǒng)計了該校2015年和2018年的高考情況,得到如圖柱狀圖:

則下列結論正確的是  

A. 與2015年相比,2018年一本達線人數減少

B. 與2015年相比,2018年二本達線人數增加了

C. 2015年與2018年藝體達線人數相同

D. 與2015年相比,2018年不上線的人數有所增加

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點F為拋物線Cy24x的焦點,過點F作斜率為k的直線l與拋物線交于AB兩點,與準線交于點P,設點D為拋物線準線與x軸的交點.

(1)若k=﹣1,求DAB的面積;

(2)若λ,μ,證明:λ+μ為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學2018年的高考考生人數是2015年高考考生人數的倍,為了更好地對比該校考生的升學情況,統(tǒng)計了該校2015年和2018年的高考情況,得到如圖柱狀圖:

則下列結論正確的是  

A. 與2015年相比,2018年一本達線人數減少

B. 與2015年相比,2018年二本達線人數增加了

C. 2015年與2018年藝體達線人數相同

D. 與2015年相比,2018年不上線的人數有所增加

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題正確的是(

A.若數列的極限都存在,且,則數列的極限存在

B.若數列、的極限都不存在,則數列的極限也不存在

C.若數列、的極限都存在,則數列、的極限也存在

D.,若數列的極限存在,則數列的極限也存在

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線 y = x3 + x2 在點 P0 處的切線平行于直線

4xy1=0,且點 P0 在第三象限,

P0的坐標;

若直線, l 也過切點P0 ,求直線l的方程.

查看答案和解析>>

同步練習冊答案