設(shè)命題p:非零向量a,b,|a|=|b|是(a+b)⊥(a-b)的充要條件:命題q:平面上M為一動(dòng)點(diǎn),A,B,C三點(diǎn)共線的充要條件是存在角α,使=sin2α+cos2α,下列命題

①p∧q;

②p∨q;

p∧q;

p∨q.

其中命題的序號(hào)是________.(將地?zé)岙惓S屑倜}的序號(hào)都填上)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知向量m=(cosA,cosB),n=(2c+b,a),且m⊥n.

(Ⅰ)求角A的大;

(Ⅱ)若a=4,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

關(guān)于函數(shù)函數(shù)f(x)=2cosx(cosx+sinx)-1,以下結(jié)論正確的是

[  ]

A.

f(x)的最小正周期是π,在區(qū)間(-,)是增函數(shù)

B.

f(x)的最小正周期是π,在區(qū)間(-)是增函數(shù)

C.

f(x)的最小正周期是π,最大值是

D.

f(x)的最小正周期是2π,最大值是2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是增函數(shù)的是

[  ]

A.

y=x+x3

B.

y=3x

C.

y=-log2x

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

已知函數(shù)x1x2∈R,x1≠x2,使得f(x1)=f(x2)成立,則實(shí)數(shù)a的取值范圍是

[  ]

A.

(-2,2)

B.

(-∞,-2)∪(2,+∞)

C.

(-∞,2)

D.

(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點(diǎn).

(Ⅰ)若PA=PD,求證:平面PQB⊥平面PAD.

(Ⅱ)點(diǎn)M在線段PC上,PM=tPC,試確定t的值,使PA∥平面MQB;

(Ⅲ)在(Ⅱ)的條件下,若平面PAD⊥平面ABCD,且PA=PD=AD=2,求二面角M-BQ-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

在區(qū)間[0,π]內(nèi)隨機(jī)取兩個(gè)數(shù)分別記為a、b,則使得函數(shù)f(x)=x2+2ax+b2+π有零點(diǎn)的概率為

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

已知函數(shù)f(x)=ax3+x2-ax,a∈R,x∈R.

(1)若函數(shù)f(x)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求a的取值范圍;

(2)直接寫出(不需要給出演算步驟)函數(shù)的單調(diào)遞增區(qū)間;

(3)如果存在a∈(-∞,-1],使函數(shù)h(x)=f(x)+(x),x∈[-1,b](b>-1)在x=-1處取得最小值,試求b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

已知過(guò)拋物線y2=2px(p>0)的焦點(diǎn),斜率為的直線交拋物線于不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),且|AB|=9.

(1)求該拋物線的方程;

(2)O為坐標(biāo)原點(diǎn),C為拋物線上一點(diǎn),若+λ,求λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案