【題目】某工廠采用甲、乙兩種不同生產(chǎn)方式生產(chǎn)某零件,現(xiàn)對兩種生產(chǎn)方式所生產(chǎn)的這種零件的產(chǎn)品質(zhì)量進行對比,其質(zhì)量按測試指標(biāo)可劃分為:指標(biāo)在區(qū)間100的為一等品;指標(biāo)在區(qū)間的為二等品現(xiàn)分別從甲、乙兩種不同生產(chǎn)方式所生產(chǎn)的零件中,各自隨機抽取100件作為樣本進行檢測,測試指標(biāo)結(jié)果的頻率分布直方圖如圖所示:
若在甲種生產(chǎn)方式生產(chǎn)的這100件零件中按等級,利用分層抽樣的方法抽取10件,再從這10件零件中隨機抽取3件,求至少有1件一等品的概率;
將頻率分布直方圖中的頻率視作概率,用樣本估計總體若從該廠采用乙種生產(chǎn)方式所生產(chǎn)的所有這種零件中隨機抽取3件,記3件零件中所含一等品的件數(shù)為X,求X的分布列及數(shù)學(xué)期望.
【答案】(1);(2)見解析
【解析】
(1)由頻率分布直方圖求出對應(yīng)的頻率和頻數(shù),再計算所求的概率值;
(2)由題意知隨機變量X~B(3,),計算對應(yīng)的概率值,寫出分布列,求出數(shù)學(xué)期望值.
由甲種生產(chǎn)方式生產(chǎn)的100件零件的測試指標(biāo)的頻率分布直方圖可知,
這100件樣本零件中有一等品:件,
二等品:件,
所以按等級,利用分層抽樣的方法抽取的10件零件中有一等品4件,二等品6件.
記事件A為“這10件零件中隨機抽取3件,至少有1件一等品”,
則;
由乙種生產(chǎn)方式生產(chǎn)的100件零件的測試指標(biāo)的頻率分布直方圖可知,
這100件樣本零件中,一等品的頻率為,
二等品的頻率為;
將頻率分布直方圖中的頻率視作概率,用樣本估計總體,
則從該廠采用乙種生產(chǎn)方式所生產(chǎn)的所有這種零件中隨機抽取3件,其中所含一等品的件數(shù),
所以,
,
,
;
的分布列為:
X | 0 | 1 | 2 | 3 |
P |
所以數(shù)學(xué)期望為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下邊的折線圖給出的是甲、乙兩只股票在某年中每月的收盤價格,已知股票甲的極差是6.88元,標(biāo)準(zhǔn)差為2.04元;股票乙的極差為27.47元,標(biāo)準(zhǔn)差為9.63元,根據(jù)這兩只股票在這一年中的波動程度,給出下列結(jié)論:①股票甲在這一年中波動相對較小,表現(xiàn)的更加穩(wěn)定;②購買股票乙風(fēng)險高但可能獲得高回報;③股票甲的走勢相對平穩(wěn),股票乙的股價波動較大;④兩只般票在全年都處于上升趨勢.其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某臍橙種植基地記錄了10棵臍橙樹在未使用新技術(shù)的年產(chǎn)量(單位:)和使用了新技術(shù)后的年產(chǎn)量的數(shù)據(jù)變化,得到表格如下:
未使用新技術(shù)的10棵臍橙樹的年產(chǎn)量
第一棵 | 第二棵 | 第三棵 | 第四棵 | 第五棵 | 第六棵 | 第七棵 | 第八棵 | 第九棵 | 第十棵 | |
年產(chǎn)量 | 30 | 32 | 30 | 40 | 40 | 35 | 36 | 45 | 42 | 30 |
使用了新技術(shù)后的10棵臍橙樹的年產(chǎn)量
第一棵 | 第二棵 | 第三棵 | 第四棵 | 第五棵 | 第六棵 | 第七棵 | 第八棵 | 第九棵 | 第十棵 | |
年產(chǎn)量 | 40 | 40 | 35 | 50 | 55 | 45 | 42 | 50 | 51 | 42 |
已知該基地共有20畝地,每畝地有50棵臍橙樹.
(1)估計該基地使用了新技術(shù)后,平均1棵臍橙樹的產(chǎn)量;
(2)估計該基地使用了新技術(shù)后,臍橙年總產(chǎn)量比未使用新技術(shù)將增產(chǎn)多少?
(3)由于受市場影響,導(dǎo)致使用新技術(shù)后臍橙的售價由原來(未使用新技術(shù)時)的每千克10元降為每千克9元,試估計該基地使用新技術(shù)后臍橙年總收入比原來增加的百分?jǐn)?shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①正切函數(shù)圖象的對稱中心是唯一的;
②若函數(shù)的圖像關(guān)于直線對稱,則這樣的函數(shù)是不唯一的;
③若,是第一象限角,且,則;
④若是定義在上的奇函數(shù),它的最小正周期是,則.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在橢圓外一直線上取 個不同的點,過向橢圓作切線、,切點分別為、.記直線為.
(1)若存在正整數(shù)、(、,),使得點在直線上,證明:點在直線上;
(2)試求直線將橢圓分成的區(qū)域的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐中,菱形所在的平面,是中點,是上的點.
(1)求證:平面平面;
(2)若是的中點,當(dāng)時,是否存在點,使直線與平面的所成角的正弦值為?若存在,請求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我省5名醫(yī)學(xué)專家馳援湖北武漢抗擊新冠肺炎疫情現(xiàn)把專家全部分配到A,B,C三個集中醫(yī)療點,每個醫(yī)療點至少要分配1人,其中甲專家不去A醫(yī)療點,則不同分配種數(shù)為( )
A.116B.100C.124D.90
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)證明:當(dāng)時,函數(shù)在上是單調(diào)函數(shù);
(2)當(dāng)時,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,,為自然對數(shù)的底數(shù)),若對于恒成立.
(1)求實數(shù)的值;
(2)證明:存在唯一極大值點,且.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com