【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)寫出的普通方程和的直角坐標(biāo)方程;

2)設(shè)點上,點上,求的最小值及此時的直角坐標(biāo).

【答案】(1)的普通方程為:的直角坐標(biāo)方程為:(2)的最小值為,此時的直角坐標(biāo)為

【解析】

1)直接利用參數(shù)方程和極坐標(biāo)方程公式得到答案.

2)最小值為點到直線的距離,,再根據(jù)三角函數(shù)求最值.

1,化簡:.

,由

化簡可得:.

所以的普通方程為:的直角坐標(biāo)方程為:;

2)由題意,可設(shè)點的直角坐標(biāo)為,因為是直線,

所以的最小值,即為的距離的最小值,利用三角函數(shù)性質(zhì)求得最小值.

,

其中,

當(dāng)且僅當(dāng)時,取得最小值,最小值為,

此時的直角坐標(biāo)為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,是矩形,平面,,,四棱錐外接球的球心為,點是棱上的一個動點.給出如下命題:①直線與直線是異面直線;②一定不垂直;③三棱錐的體積為定值;④的最小值為.其中正確命題的序號是______________.(將你認(rèn)為正確的命題序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】任意連結(jié)正六邊形的6個頂點組成一條閉折線.求證當(dāng)中必有兩條邊是平行的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐中,平面

,分別為線段上的點,且。

(1)證明:平面;

(2)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某旅游景區(qū)的景點處和處之間有兩種到達(dá)方式,一種是沿直線步行,另一種是沿索道乘坐纜車,現(xiàn)有一名游客從處出發(fā),以的速度勻速步行,后到達(dá)處,在處停留后,再乘坐纜車回到.假設(shè)纜車勻速直線運(yùn)動的速度為.

1)求該游客離景點的距離關(guān)于出發(fā)后的時間的函數(shù)解析式,并指出該函數(shù)的定義域;

2)做出(1)中函數(shù)的圖象,并求該游客離景點的距離不小于的總時長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的四棱錐中,底面為菱形,,為正三角形.

(1)證明:

(2)若,四棱錐的體積為16,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】0123456可以組成多少個沒有重復(fù)數(shù)字的

1)五位數(shù);

2)五位偶數(shù);

3)能被5整除的五位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查某工廠生產(chǎn)的一種產(chǎn)品的尺寸是否合格,現(xiàn)從500件產(chǎn)品中抽出10件進(jìn)行檢驗先將500件產(chǎn)品編號為000,001,002,499,在隨機(jī)數(shù)表中任選一個數(shù)開始,例如選出第6行第8列的數(shù)4開始向右讀為了便于說明,下面摘取了隨機(jī)數(shù)表,附表1的第6行至第8,即第一個號碼為439,則選出的第4個號碼是(

162277943949544354821737932378

844217533157245506887704744767

630163785916955567199810507175

A.548B.443C.379D.217

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間有關(guān)系,某農(nóng)科所對此關(guān)系進(jìn)行了調(diào)查分析,他們分別記錄了121日至125日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗.

(1)求選取的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;

(2)若選取的是121日與125日的兩組數(shù)據(jù),請根據(jù)122日至124日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(參考公式:,.)

查看答案和解析>>

同步練習(xí)冊答案