已知橢圓C:數(shù)學(xué)公式+數(shù)學(xué)公式=1(a>b>0)的一個焦點(diǎn)是(1,0),兩個焦點(diǎn)與短軸的一個端點(diǎn)構(gòu)成等邊三角形,則橢圓方程


  1. A.
    數(shù)學(xué)公式+數(shù)學(xué)公式=1
  2. B.
    數(shù)學(xué)公式=1
  3. C.
    數(shù)學(xué)公式=1
  4. D.
    數(shù)學(xué)公式=1
B
分析:利用橢圓的標(biāo)準(zhǔn)方程與橢圓的幾何性質(zhì)即可求得答案.
解答:∵橢圓C:+=1(a>b>0)的一個焦點(diǎn)是(1,0),
∴c=1.
又兩個焦點(diǎn)與短軸的一個端點(diǎn)構(gòu)成等邊三角形,
∴sin30°==,
∴a=2,
∴b2=a2-c2=4-1=3.
∴橢圓的標(biāo)準(zhǔn)方程為:+=1.
故選B.
點(diǎn)評:本題考查橢圓的標(biāo)準(zhǔn)方程及橢圓的幾何性質(zhì),考查解三角形的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:+y2=1,則與橢圓C關(guān)于直線y=x成軸對稱的曲線的方程是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年陜西省高考數(shù)學(xué)壓軸卷(解析版) 題型:選擇題

已知橢圓C:+=1(a>b>0)的左右焦點(diǎn)為F1,F(xiàn)2,過F2線與圓x2+y2=b2相切于點(diǎn)A,并與橢圓C交與不同的兩點(diǎn)P,Q,如圖,PF1⊥PQ,若A為線段PQ的靠近P的三等分點(diǎn),則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣西桂林市、崇左市、防城港市高考第一次聯(lián)合模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題

 如圖,已知橢圓C:+=1(a>b>0)的左、右焦點(diǎn)分別為F、F,A是橢圓C上的一點(diǎn),AF⊥FF,O是坐標(biāo)原點(diǎn),OB垂直AF于B,且OF=3OB.

(Ⅰ)求橢圓C的離心率;

(Ⅱ)求t∈(0,b),使得命題“設(shè)圓x+y=t上任意點(diǎn)M(x,y)處的切線交橢圓C于Q、Q兩點(diǎn),那么OQ⊥OQ”成立.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省攀枝花市高三12月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,且在x軸上的頂點(diǎn)分別為

(1)求橢圓方程;

(2)若直線軸交于點(diǎn)T,P為上異于T的任一點(diǎn),直線分別與橢圓交于M、N兩點(diǎn),試問直線MN是否通過橢圓的焦點(diǎn)?并證明你的結(jié)論.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三上學(xué)期摸底考試文科數(shù)學(xué) 題型:解答題

(本題滿分14分)已知橢圓C:=1(a>b>0)的離心率為,短軸一

 

個端點(diǎn)到右焦點(diǎn)的距離為3.

(1)求橢圓C的方程;

(2)過橢圓C上的動點(diǎn)P引圓O:的兩條切線PA、PB,A、B分別為切點(diǎn),試探究橢圓C上是否存在點(diǎn)P,由點(diǎn)P向圓O所引的兩條切線互相垂直?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

 

 

 

查看答案和解析>>

同步練習(xí)冊答案