在平面直角坐標(biāo)系中,已知直線的參數(shù)方程是(為參數(shù));以為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,圓的極坐標(biāo)方程為.
(1)寫出直線的普通方程與圓的直角坐標(biāo)方程;
(2)由直線上的點(diǎn)向圓引切線,求切線長(zhǎng)的最小值.
(1),曲線C:(2)

試題分析:先將圓的極坐標(biāo)方程化為直角坐標(biāo)方程,再把直線上的點(diǎn)的坐標(biāo)(含參數(shù))代入,
化為求函數(shù)的最值問(wèn)題,也可將直線的參數(shù)方程化為普通方程,
根據(jù)勾股定理轉(zhuǎn)化為求圓心到直線上最小值的問(wèn)題.
試題解析:(1),曲線C:     4分
(2)因?yàn)閳A的極坐標(biāo)方程為,所以,
所以圓的直角坐標(biāo)方程為,圓心為,半徑為1,     6分
因?yàn)橹本的參數(shù)方程為(為參數(shù)),
所以直線上的點(diǎn)向圓C引切線長(zhǎng)是

所以直線上的點(diǎn)向圓C引的切線長(zhǎng)的最小值是.       10分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直線為參數(shù)), 曲線 (為參數(shù)).
(1)設(shè)相交于兩點(diǎn),求;
(2)若把曲線上各點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的倍,縱坐標(biāo)壓縮為原來(lái)的倍,得到曲線,設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系中,已知曲線為參數(shù)),將曲線上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長(zhǎng)為原來(lái)的、倍后得到曲線的直角坐標(biāo)方程為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),曲線C的參數(shù)方程為(θ為參數(shù)),試求直線l與曲線C的普通方程,并求出它們的公共點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求極坐標(biāo)方程ρcosθ=2sin2θ表示的曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

極坐標(biāo)系中,圓的圓心到直線
的距離是_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(坐標(biāo)系與參數(shù)方程選做題)已知直線為參數(shù)且)與曲線
是參數(shù)且),則直線與曲線的交點(diǎn)坐標(biāo)為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(坐標(biāo)系與參數(shù)方程選講選做題)在平面直角坐標(biāo)系下xoy中,直線l的參數(shù)方程是(參數(shù)tR).圓的參數(shù)方程為(參數(shù)),則圓C的圓心到直線l的距離為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線ρ(cosθ-sinθ)-a=0與曲線(θ為參數(shù))有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)a的取值范圍為       

查看答案和解析>>

同步練習(xí)冊(cè)答案