必做題, 本小題10分.解答時應寫出文字說明、證明過程或演算步驟.
在三棱錐ABCD中,平面DBC⊥平面ABC,△ABC為正三角形, AC=2,DC=DB=
(1)求DC與AB所成角的余弦值;
(2)在平面ABD上求一點P,使得CP⊥平面AB              D.

(1)
(2)(
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,棱錐P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.

(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)求二面角PCDB的大;
(Ⅲ)求點C到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在長方體中,,且.

(Ⅰ)求證:對任意,總有
(Ⅱ)若,求二面角的余弦值;
(Ⅲ)是否存在,使得在平面上的射影平分?若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
如圖,在直三棱柱中,,,的中點.

(Ⅰ)在線段上是否存在一點,使得⊥平面?若存在,找出點的位置幷證明;若不存在,請說明理由;
(Ⅱ)求平面和平面所成角的大小

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四棱錐P-ABCD中,底面ABCD是矩形,M、N分別為PA、BC的中點, PD⊥平面ABCD,且PD=AD=,CD=1.
(Ⅰ)證明:MN∥平面PCD;
(Ⅱ)證明:MC⊥BD;
(Ⅲ)求二面角A—PB—D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,正方形ADEF所在平面和等腰梯形所在平面ABCD垂直,已知BC=2AD=4,,
(I)求證:面ABF;
(II)求異面直線BE與AF所成的角;
(III)求該幾何體的表面積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

球的半徑擴大為原來的2倍,它的體積擴大為原來的              倍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題12分)
如圖,正方體ABCD—A1B1C1D1中,M、N分別為AB、BC的中點.
(Ⅰ)求證:平面B1MN⊥平面BB1D1D;
(II)當點P為棱DD1中點時,求直線MB1與平面A1C1P所成角的正弦值;
            

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對于不重合的兩個平面α與β,給定下列條件:
①存在平面γ,使得α、β都平行于γ;
②存在平面γ,使得α、β都垂直于γ;
③α內(nèi)有不共線的三點到β的距離相等;
④存在異面直線l,m,使得l//α,l//β,m//α,m//β;
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習冊答案