【題目】如圖,直三棱柱中,,,,為的中點,點為線段上的一點.
(1)若,求證: ;
(2)若,異面直線與所成的角為30°,求直線與平面所成角的正弦值.
【答案】(1)證明見解析 (2)
【解析】
(1)取中點,連接,,易知要證,先證平面;
(2)如圖以為坐標(biāo)原點,分別以,,為軸軸軸,建立空間直角坐標(biāo)系,求出平面的法向量及直線的方向向量,即可得到結(jié)果.
(1)證明:取中點,連接,,有,因為,所以,又因為三棱柱為直三棱柱,
所以平面平面,又因為平面平面,
所以平面,又因為平面,
所以
又因為,,平面,平面,
所以平面,
又因為平面,
所以,
因為,
所以.
(2)設(shè),如圖以為坐標(biāo)原點,分別以,,為軸軸軸,建立空間直角坐標(biāo)系,
由 (1)可知,,所以,
故,,,,,
對平面,,,
所以其法向量為.
又,
所以直線與平面成角的正弦值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解用戶對其產(chǎn)品的滿意度,從兩地區(qū)分別隨機調(diào)查了40個用戶,根據(jù)用戶對產(chǎn)品的滿意度評分,得到地區(qū)用戶滿意度評分的頻率分布直方圖和地區(qū)用戶滿意度評分的頻數(shù)分布表.
地區(qū)用戶滿意度評分的頻率分布直方圖如下:
地區(qū)用戶滿意度評分的頻數(shù)分布表如下:
(1)在圖中作出地區(qū)用戶滿意度評分的頻率分布直方圖,并通過直方圖比較兩地區(qū)滿意度評分的平均值及分散程度(不要求計算出具體值,給出結(jié)論即可).
地區(qū)用戶滿意度評分的頻率分布直方圖
(2)根據(jù)用戶滿意度評分,將用戶的滿意度分為三個等級:
公司負(fù)責(zé)人為了解用戶滿意度情況,從B地區(qū)調(diào)查8戶,其中有兩戶滿意度等級是不滿意.求從這8戶中隨機抽取2戶檢查,抽到不滿意用戶的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,圓.
(1)若直線過點且在兩坐標(biāo)軸上截距之和等于,求直線的方程;
(2)設(shè)是圓上的動點,求(為坐標(biāo)原點)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)是否存在負(fù)實數(shù)a,使,函數(shù)有最小值-3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,已知點的直角坐標(biāo)為,若直線的極坐標(biāo)方程為曲線的參數(shù)方程是(為參數(shù)).
(1)求直線和曲線的普通方程;
(2)設(shè)直線和曲線交于兩點,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某校學(xué)生課外時間的分配情況,擬采用分層抽樣的方法從該校的高一、高二、高三這三個年級中共抽取5個班進行調(diào)查,已知該校的高一、高二、高三這三個年級分別有18、6、6個班級.
(Ⅰ)求分別從高一、高二、高三這三個年級中抽取的班級個數(shù);
(Ⅱ)若從抽取的5個班級中隨機抽取2個班級進行調(diào)查結(jié)果的對比,求這2個班級中至少有1個班級來自高一年級的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】排一張5個獨唱和3個合唱的節(jié)目單,如果合唱不排兩頭,且任何兩個合唱不相鄰,則這種事件發(fā)生的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著高考制度的改革,某省即將實施“語數(shù)外+3”新高考的方案,2019年秋季入學(xué)的高一新生將面臨從物理(物)、化學(xué)(化)、生物(生)、政治(政)、歷史(歷)、地理(地)六科中任選三科(共20種選法)作為自己將來高考“語數(shù)外+3”新高考方案中的“3”某市為了順利地迎接新高考改革,在某高中200名學(xué)生中進行了“學(xué)生模擬選科數(shù)據(jù)”調(diào)查,每個學(xué)生只能從表格中的20種課程組合中選擇一種學(xué)習(xí)模擬選課數(shù)據(jù)統(tǒng)計如下表:
為了解學(xué)生成績與學(xué)生模擬選課情況之問的關(guān)系,用分層抽樣的方法從這200名學(xué)生中抽取40人的樣本進行分析
(1)從選擇學(xué)習(xí)物理且學(xué)習(xí)化學(xué)的學(xué)生中隨機抽取3人,求這3人中至少有2人要學(xué)習(xí)生物的概率:
(2)從選擇學(xué)習(xí)物理且學(xué)習(xí)化學(xué)的學(xué)生中隨機抽取3人,記這3人中要學(xué)習(xí)地理的人數(shù)為x,求隨機變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若不等式解集為,求實數(shù)的值;
(2)在(1)的條件下,若不等式解集非空,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com