【題目】設(shè)函數(shù).
(1)若不等式解集為,求實(shí)數(shù)的值;
(2)在(1)的條件下,若不等式解集非空,求實(shí)數(shù)的取值范圍.
【答案】(1)-2;(2)或或.
【解析】
(1)由題意把不等式化為|x﹣2a|≤2﹣a,去掉絕對(duì)值,寫出x的取值范圍,再根據(jù)不等式的解集列方程求出a的值;
(2)把不等式化為|x+4|+1≤(k2﹣1)x,設(shè)g(x)=|x+4|+1,作出g(x)的圖象,結(jié)合圖象知要使不等式的解集非空,應(yīng)滿足的條件是什么,由此求得k的取值范圍.
解:(1)函數(shù)f(x)=+a,
∴不等式f(x)≤2化為≤2﹣a,
∴a﹣2≤x﹣2a≤2﹣a,
解得3a﹣2≤x≤a+2;
又f(x)≤2的解集為{x|﹣8≤x≤0},
∴,
解得a=﹣2;
(2)在(1)的條件下,f(x)=|x﹣4|﹣2,
不等式f(x)≤(k2﹣1)x﹣3化為|x+4|+1≤(k2﹣1)x,
令g(x)=|x+4|+1,作出g(x)的圖象,如圖所示;
由圖象知,要使不等式的解集非空,應(yīng)滿足:
k2﹣1>1或k2﹣1,
即k2>2或k2,
解得k或k或x,
所以實(shí)數(shù)k的取值范圍是{k|k或k或k}.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面內(nèi)與兩定點(diǎn),連線的斜率之積等于非零常數(shù)的點(diǎn)的軌跡,加上、兩點(diǎn)所成的曲線可以是圓、橢圓或雙曲線,給出以下四個(gè)結(jié)論:①當(dāng)時(shí),曲線是一個(gè)圓;②當(dāng)時(shí),曲線的離心率為;③當(dāng)時(shí),曲線的漸近線方程為;④當(dāng)曲線的焦點(diǎn)坐標(biāo)分別為和時(shí),的范圍是.其中正確的結(jié)論序號(hào)為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:上的點(diǎn)到右焦點(diǎn)F的最大距離為,離心率為.
求橢圓C的方程;
如圖,過(guò)點(diǎn)的動(dòng)直線l交橢圓C于M,N兩點(diǎn),直線l的斜率為,A為橢圓上的一點(diǎn),直線OA的斜率為,且,B是線段OA延長(zhǎng)線上一點(diǎn),且過(guò)原點(diǎn)O作以B為圓心,以為半徑的圓B的切線,切點(diǎn)為令,求取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,圓O:x2+y2=4與x軸負(fù)半軸交于點(diǎn)A,過(guò)點(diǎn)A的直線AM,AN分別與圓O交于M,N兩點(diǎn),設(shè)直線AM、AN的斜率分別為k1、k2.
(1)若,求△AMN的面積;
(2)若k1k2=-2,求證:直線MN過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中,底面是矩形,平面,AB 1,AP AD 2.
(1)求直線與平面所成角的正弦值;
(2)若點(diǎn)M,N分別在AB,PC上,且平面,試確定點(diǎn)M,N的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,當(dāng)點(diǎn)E在B1D1(與B1,D1不重合)上運(yùn)動(dòng)時(shí),總有:
①AE∥BC1; ②平面AA1E⊥平面BB1D1D;
③AE∥平面BC1D; ④A1C⊥AE.
以上四個(gè)推斷中正確的是( )
A.①②B.①④C.②④D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,平面,四邊形為正方形,四邊形為梯形,且,,,.
(1)求直線與平面所成角的正弦值;
(2)線段上是否存在點(diǎn),使得直線平面?若存在,求的值:若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com