(本小題共13分)已知橢圓的右焦點(diǎn)為,為橢圓的上頂點(diǎn),為坐標(biāo)原點(diǎn),且△是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線交橢圓于,兩點(diǎn), 且使點(diǎn)為△的垂心(垂心:三角形三邊高線的交點(diǎn))?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.
解:(Ⅰ)由△是等腰直角三角形,得,,
故橢圓方程為.                      …………5分
(Ⅱ)假設(shè)存在直線交橢圓于,兩點(diǎn),且為△的垂心,
設(shè),
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205737293604.png" style="vertical-align:middle;" />,,故.                    …………7分
于是設(shè)直線的方程為,

,得, 且,.   ……9分
由題意應(yīng)有,又,
,


整理得
解得.                              …………12分
經(jīng)檢驗(yàn),當(dāng)時(shí),△不存在,故舍去
當(dāng)時(shí),所求直線存在,且直線的方程為
…………13分
本題考查橢圓的方程和直線與橢圓的相交問(wèn)題,考查學(xué)生利用待定系數(shù)法和解析法的解題能力. 待定系數(shù)法:如果題目給出是何曲線,可根據(jù)題目條件,恰當(dāng)?shù)脑O(shè)出曲線方程,然后借助條件進(jìn)一步確定求橢圓的標(biāo)準(zhǔn)方程應(yīng)從“定形”“定式”“定量”三個(gè)方面去思考!岸ㄐ巍笔侵笇(duì)稱中心在原點(diǎn),焦點(diǎn)在哪條對(duì)稱軸上;“定式”是指根據(jù)“形”設(shè)出相應(yīng)的橢圓方程的具體形式;“定量”是指利用定義法或待定系數(shù)法確定的值.本題第一問(wèn)利用橢圓的離心率和直線與橢圓相切判別式為0得到兩個(gè)等式求解的值;關(guān)于直線與圓錐曲線位置關(guān)系的存在性問(wèn)題,一般先假設(shè)存在滿足題意的元素,經(jīng)過(guò)推理論證,如果得到可以成立的結(jié)果,就可以作出存在的結(jié)論;若得到與已知條件、定義、公理、定理、性質(zhì)相矛盾的量,則說(shuō)明假設(shè)不成立.本題的第二問(wèn)就是利用這個(gè)解題思路,借助韋達(dá)定理和距離公式進(jìn)行轉(zhuǎn)化和探索.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過(guò)點(diǎn),過(guò)點(diǎn)的直線與橢圓相交于不同的兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存直線,滿足?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓.,分別為橢圓的左,右焦點(diǎn),, 分別為橢圓的左,右頂點(diǎn).過(guò)右焦點(diǎn)且垂直于軸的直線與橢圓在第一象限的交點(diǎn)為.
(1) 求橢圓的標(biāo)準(zhǔn)方程;
(2) 直線與橢圓交于,兩點(diǎn), 直線交于點(diǎn).當(dāng)直線變化時(shí), 點(diǎn)是否恒在一條定直線上?若是,求此定直線方程;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)且兩兩互相垂直的直線分別交橢圓。(13分)
(1)求的最值
(2)求證:為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
設(shè)橢圓的離心率,右焦點(diǎn)到直線的距離為坐標(biāo)原點(diǎn)。
(I)求橢圓的方程;
(II)過(guò)點(diǎn)作兩條互相垂直的射線,與橢圓分別交于兩點(diǎn),證明點(diǎn)到直線的距離為定值,并求弦長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓與直線相切,分別是橢圓的左右兩個(gè)頂點(diǎn), 為橢圓上的動(dòng)點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若均不重合,設(shè)直線的斜率分別為,證明:為定值;
(Ⅲ)為過(guò)且垂直于軸的直線上的點(diǎn),若,求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,把橢圓的長(zhǎng)軸分成等份,過(guò)每個(gè)分點(diǎn)作軸的垂線交橢圓的上半部分于七個(gè)點(diǎn),是橢圓的一個(gè)焦點(diǎn),則(   ).
A.50B.35C.32D.41

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

、方程表示橢圓的充要條件是          

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

. (本小題滿分12分)
如圖,設(shè)拋物線C1:的準(zhǔn)線與x軸交于F1,焦點(diǎn)為F2;以F1,F2為焦點(diǎn),離心率的橢圓C2與拋物線C1在X軸上方的交點(diǎn)為P,延長(zhǎng)PF2交拋物線于點(diǎn)Q,M是拋物線上一動(dòng)點(diǎn),且M在P與Q之間運(yùn)動(dòng).
(I)當(dāng)m =1時(shí),求橢圓C2的方程;
(II)當(dāng)的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù)時(shí),求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案