練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題共13分)已知橢圓
的右焦點為
,
為橢圓的上頂點,
為坐標原點,且△
是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線
交橢圓于
,
兩點, 且使點
為△
的垂心(垂心:三角形三邊高線的交點)?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知
、
、
是長軸長為
的橢圓上的三點,點
是長軸的一個頂點,
過橢圓中心
,且
,
,
(1)求橢圓的方程;
(2)如果橢圓上兩點
、
使
的平分線垂直
,則是否存在實數(shù)
使
?請說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,橢圓的中心在坐標原點,長軸端點為A,B,右焦點為F,且
.
(I) 求橢圓的標準方程;
(II)過橢圓的右焦點F作直線
,直線l
1與橢圓分別交于點M,N,直線l
2與橢圓分別交于點P,Q,且
,求四邊形MPNQ的面積S的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
C的離心率
=
,長軸的左右兩個端點分別為
;
(1)求橢圓C的方程;
(2)點
在該橢圓上,且
,求點
到
軸的距離;
(3)過點(1,0)且斜率為1的直線與橢圓交于P,Q兩點,求△OPQ的面積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知地球運行的軌道是橢圓,太陽在這個橢圓的一個焦點上,這個橢圓的長半軸長約為
km,半焦距約為
km,則地球到太陽的最大距離是
km。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
.(本小題滿分13分)
P為橢圓
上任意一點,
為左、右焦點,
如圖所示.
(1)若
的中點為
,求證:
(2)若∠
,求|
PF1|·|
PF2|之值;
(3)橢圓上是否存在點
P,使·=0,若存在,求出
P點的坐標,若不存在,試說明理由
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
是橢圓
上的點,以
為圓心的圓與
軸相切于橢
圓的焦點
,圓
與
軸相交于
兩點.若
為銳角三角形,則橢圓的離心率
的取值范圍為( )
查看答案和解析>>