已知集合A={a1,a2,…,ak}(k≥2),其中a1∈Z(i=1,2,L,k),若對(duì)于任意的a∈A,總有-a∉A,則稱(chēng)集合A具有性質(zhì)P.
設(shè)集合T={(a,b)|a∈A,b∈A,a-b∈A)},其中(a,b)是有序數(shù)對(duì),集合T 中的元素個(gè)數(shù)分別為n.
(Ⅰ)檢驗(yàn)集合{0,1,2,3}與{-1,2,3}是否具有性質(zhì)P并對(duì)其中具有性質(zhì)P的集合,寫(xiě)出相應(yīng)的集合T;
(Ⅱ)對(duì)任何具有性質(zhì)P的集合A,求n的最大值(用k表示).
分析:(I)利用性質(zhì)P的定義判斷出具有性質(zhì)P的集合,利用集合S,T的定義寫(xiě)出S,T.
(II)據(jù)具有性質(zhì)P的集合滿(mǎn)足a∈A,總有-a∉A,得到0∉A得到(ai,ai)∉T;當(dāng)(ai,aj)∈T時(shí),(aj,ai)∉T,求出T中的元素個(gè)數(shù).
解答:(I)解:集合{0,1,2,3}不具有性質(zhì)P.
集合{-1,2,3}具有性質(zhì)P,其相應(yīng)的集合S和T是
S=(-1,3),(3,-1),T=(2,-1),(2,3).
(II)證明:首先,由A中元素構(gòu)成的有序數(shù)對(duì)(ai,aj)共有k2個(gè).
∵0∉A,
∴(ai,ai)∉T(i=1,2,k);
又∵當(dāng)a∈A時(shí),-a∉A時(shí),-a∉A,
∴當(dāng)(ai,aj)∈T時(shí),(aj,ai)∉T(i,j=1,2,k).
從而,集合T中元素的個(gè)數(shù)最多為
1
2
(k2-k)
=
k2-k
2
,
即n
k(k-1)
2
點(diǎn)評(píng):本題主要考查新定義的應(yīng)用,正確理解定義的意義是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A=a1,a2,…,an中的元素都是正整數(shù),且a1<a2<…<an,對(duì)任意的x,y∈A,且x≠y,有|x-y|≥
xy
25

(Ⅰ)求證:
1
a1
-
1
an
n-1
25
;    
(Ⅱ)求證:n≤9;
(Ⅲ)對(duì)于n=9,試給出一個(gè)滿(mǎn)足條件的集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A=a1,a2,a3,…,an,其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的個(gè)數(shù).
(Ⅰ)設(shè)集合P=2,4,6,8,Q=2,4,8,16,分別求l(P)和l(Q);
(Ⅱ)若集合A=2,4,8,…,2n,求證:l(A)=
n(n-1)2
;
(Ⅲ)l(A)是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={a1,a2,…,an}中的元素都是正整數(shù),且a1<a2<…<an,對(duì)任意的x,y∈A,且x≠y,都有|x-y| ≥
xy
36

(1)求證:
1
a1
-
1
an
n-1
36
;(提示:可先求證
1
ai
-
1
ai+1
1
36
(i=1,2,…,n-1),然后再完成所要證的結(jié)論.)
(2)求證:n≤11;
(3)對(duì)于n=11,試給出一個(gè)滿(mǎn)足條件的集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={a1,a2,a3,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示ai+aj(1≤i<j≤n)中所有不同值的個(gè)數(shù).
(1)設(shè)集合P={2,4,6,8},Q={2,4,8,16},分別求l(P)和l(Q)的值;
(2)若集合A={2,4,8,…,2n},求l(A)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={a1,a2,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的個(gè)數(shù).
(Ⅰ)若集合A={2,4,8,16},則l(A)=
 
;
(Ⅱ)當(dāng)n=108時(shí),l(A)的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案